Diversity of Microflora in Colonic Mucus from Severe Ulcerative Colitis Patients Analyzed by Terminal Restriction Fragment Length Polymorphism and Clone Libraries of Bacterial 16S rRNA Gene Sequences

DOI: 10.4236/aim.2014.413095   PDF   HTML     3,146 Downloads   3,834 Views  


Although the gut microflora is thought to be an essential factor in the development of ulcerative colitis (UC), the entire gut microflora occurring in UC remains unknown. Most studies use feces to represent the microflora distribution; however, here we analyzed the bacterial diversity in colonic mucus from UC patients receiving colectomy surgery and control patients. The diversity of microflora was investigated using a combination of terminal restriction fragment length polymorphism (T-RFLP) and clone library analyses of the 16S rRNA gene sequences. In the T-RFLP analysis, the number of terminal restriction fragments (T-RFs) decreased significantly in UC patients when compared to control samples. Also in the clone library analysis, the number of operational taxonomic units (OTU) and the Shannon diversity index were reduced significantly in UC patients. These molecular analyses reveal an overall dysbiosis in UC patients. No specific pathogen was found, and a strong negative correlation in relative abundance of bacterial populations was observed between the phyla Bacteroidetes and Firmicutes in the UC patients. This is the first report showing a significant correlation between these two phyla, which may be important characteristics in the pathogenesis of UC.

Share and Cite:

Huang, I. , Sato, Y. , Sakamoto, M. , Ohkuma, M. , Ohnuma, S. , Naitoh, T. , Shibata, C. , Horii, A. , Nishimura, J. , Kitazawa, H. and Saito, T. (2014) Diversity of Microflora in Colonic Mucus from Severe Ulcerative Colitis Patients Analyzed by Terminal Restriction Fragment Length Polymorphism and Clone Libraries of Bacterial 16S rRNA Gene Sequences. Advances in Microbiology, 4, 857-870. doi: 10.4236/aim.2014.413095.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Fisher, S.A., Tremelling, M., Anderson, C.A., Gwilliam, R., Bumpstead, S., Prescott, N.J., et al. (2008) Genetic Determinants of Ulcerative Colitis Include the ECM1 Locus and Five Loci Implicated in Crohn’s Disease. Nature Genetics, 40, 710-712. http://dx.doi.org/10.1038/ng.145
[2] Satsangi, J., Welsh, K.I., Bunce, M., Julier, C., Farrant, J.M., Bell, J.I., et al. (1996) Contribution of Genes of the Major Histocompatibility Complex to Susceptibility and Disease Phenotype in Inflammatory Bowel Disease. The Lancet, 347, 1212-1217. http://dx.doi.org/10.1016/S0140-6736(96)90734-5
[3] Yang, S.K., Hong, W.S., Min, Y.I., Kim, H.Y., Yoo, J.Y., Rhee, P.L., et al. (2000) Incidence and Prevalence of Ulcerative Colitis in the Songpa-Kangdong District, Seoul, Korea, 1986-1997. Journal of Gastroenterology and Hepatology, 15, 1037-1042.
[4] Ahuja, V. and Tandon, R.K. (2010) Inflammatory Bowel Disease in the Asia-Pacific Area: A Comparison with Developed Countries and Regional Differences. Journal of Digestive Diseases, 11, 134-147.
[5] Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. and Medzhitov, R. (2004) Recognition of Commensal Microflora by Toll-Like Receptors Is Required for Intestinal Homeostasis. Cell, 118, 229-241. http://dx.doi.org/10.1016/j.cell.2004.07.002
[6] Bouskra, D., Brézillon, C., Bérard, M., Werts, C., Varona, R., Boneca, I.G., et al. (2008) Lymphoid Tissue Genesis Induced by Commensals through NOD1 Regulates Intestinal Homeostasis. Nature, 456, 507-510. http://dx.doi.org/10.1038/nature07450
[7] Tsuji, M., Suzuki, K., Kitamura, H., Maruya, M., Kinoshita, K., Ivanov, I.I., et al. (2008) Requirement for Lymphoid Tissue-Inducer Cells in Isolated Follicle Formation and T Cell-Independent Immunoglobulin A Generation in the Gut. Immunity, 29, 261-271. http://dx.doi.org/10.1016/j.immuni.2008.05.014
[8] Sadlack, B., Merz, H., Schorle, H., Schimpl, A., Feller, A.C. and Horak, I. (1993) Ulcerative Colitis-Like Disease in Mice with a Disrupted Interleukin-2 Gene. Cell, 75, 253-261.
[9] Sellon, R.K., Tonkonogy, S., Schultz, M., Dieleman, L.A., Grenther, W., Balish, E., et al. (1998) Resident Enteric Bacteria Are Necessary for Development of Spontaneous Colitis and Immune System Activation in Interleukin-10-Deficient mice. Infection and Immunity, 66, 5224-5531.
[10] Bhan, A.K., Mizoguchi, E., Smith, R.N. and Mizoguchi, A. (2000) Spontaneous Chronic Colitis in TCR Alpha-Mutant Mice: An Experimental Model of Human Ulcerative Colitis. International Reviews of Immunology, 19, 123-138. http://dx.doi.org/10.3109/08830180009048393
[11] Ott, S.J., Plamondon, S., Hart, A., Begun, A., Rehman, A., Kamm, M.A., et al. (2008) Dynamics of the Mucosa-Associated Flora in Ulcerative Colitis Patients during Remission and Clinical Relapse. Journal of Clinical Microbiology, 46, 3510-3513. http://dx.doi.org/10.1128/JCM.01512-08
[12] Lucke, K., Miehlke, S., Jacobs, E. and Schuppler, M. (2006) Prevalence of Bacteroides and Prevotella spp. in Ulcerative Colitis. Journal of Medical Microbiology, 55, 617-624.
[13] Frank, D.N., St. Amand, A.L., Feldman, R.A., Boedeker, E.C., Harpaz, N. and Pace, N.R. (2007) Molecular-Phylogenetic Characterization of Microbial Community Imbalances in Human Inflammatory Bowel Diseases. Proceedings of the National Academy of Sciences of the United States of America, 104, 13780-13785. http://dx.doi.org/10.1073/pnas.0706625104
[14] Takaishi, H., Matsuki, T., Nakazawa, A., Takada, T., Kado, S., Asahara, T., et al. (2008) Imbalance in Intestinal Microflora Constitution Could Be Involved in the Pathogenesis of Inflammatory Bowel Disease. International Journal of Medical Microbiology, 298, 463-472.
[15] Nishikawa, J., Kudo, T., Sakata, S., Benno, Y. and Sugiyama, T. (2009) Diversity of Mucosa-Associated Microbiota in Active and Inactive Ulcerative Colitis. Scandinavian Journal of Gastroenterology, 44, 180-186. http://dx.doi.org/10.1080/00365520802433231
[16] Bloom, S.M., Bijanki, V.N., Nava, G.M., Sun, L., Malvin, N.P., Donermeyer, D.L., et al. (2011) Commensal Bacteroides Species Induce Colitis in Host-Genotype-Specific Fashion in a Mouse Model of Inflammatory Bowel Disease. Cell Host and Microbe, 9, 390-403.
[17] Burke, D.A. and Axon, A.T. (1988) Adhesive Escherichia coli in Inflammatory Bowel Disease and Infective Diarrhoea. British Medical Journal, 297, 102-104.
[18] Ohkusa, T., Sato, N., Ogihara, T., Morita, K., Ogawa, M. and Okayasu, I. (2002) Fusobacterium varium Localized in the Colonic Mucosa of Patients with Ulcerative Colitis Stimulates Species-Specific Antibody. Journal of Gastroenterology Hepatology, 17, 849-853. http://dx.doi.org/10.1046/j.1440-1746.2002.02834.x
[19] Croix, J.A., Carbonero, F., Nava, G.M., Russell, M., Greenberg, E. and Gaskins, H.R. (2011) On the Relationship between Sialomucin and Sulfomucin Expression and Hydrogenotrophic Microbes in the Human Colonic Mucosa. PLoS ONE, 6, e24447. http://dx.doi.org/10.1371/journal.pone.0024447
[20] Corfield, A.P., Myerscough, N. and Bradfield, N. (1996) Colonic Mucins in Ulcerative Colitis: Evidence for Loss Sulfation. Glycoconjugate Journal, 13, 809-822. http://dx.doi.org/10.1007/BF00702345
[21] Sakamoto, M., Rocas, I.N., Siqueira, J.F. and Benno, Y. (2006) Molecular Analysis of Bacteria in Asymptomatic and Symptomatic Endodontic Infections. Oral Microbiology and Immunology, 21, 112-122. http://dx.doi.org/10.1111/j.1399-302X.2006.00270.x
[22] Lukow, T., Dunfield, P. and Liesack, W. (2000) Use of the T-RFLP Technique to Assess Spatial and Temporal Changes in the Bacterial Community Structure within an Agricultural Soil Planted with Transgenic and Non-Transgenic Potato Plants. FEMS Microbiology Ecology, 32, 241-247.
[23] Hayashi, H., Takahashi, R., Nishi, T., Sakamoto, M. and Benno, Y. (2005) Molecular Analysis of Jejunal, Ileal, Caecal and Recto-Sigmoidal Human Colonic Microbiota Using 16S rRNA Gene Libraries and Terminal Restriction Fragment Length Polymorphism. Journal of Medical Microbiology, 54, 1093-1101. http://dx.doi.org/10.1099/jmm.0.45935-0
[24] Marsh, T.L. (1999) Terminal Restriction Fragment Length Polymorphism (T-RFLP): An Emerging Method for Characterizing Diversity among Homologous Populations of Amplification Products. Current Opinion in Microbiology, 2, 323-327. http://dx.doi.org/10.1016/S1369-5274(99)80056-3
[25] Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., et al. (2007) Clustal W and Clustal X Version 2.0. Bioinformatics, 23, 2947-2948.
[26] Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., et al. (2009) Introducing Mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Applied and Environmental Microbiology, 75, 7537-7541. http://dx.doi.org/10.1128/AEM.01541-09
[27] Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic Local Alignment Search Tool. Journal of Molecular Biology, 215, 403-410. http://dx.doi.org/10.1016/S0022-2836(05)80360-2
[28] Good, I.J. (1953) The Population Frequencies of Species and the Estimation of Population Parameters. Biometrika, 40, 237-264. http://dx.doi.org/10.1093/biomet/40.3-4.237
[29] Ludwig, J.A. and Reynolds, J.F. (1988) Statistical Ecology. John Wiley & Sons, New York.
[30] Simpson, E.H. (1949) Measurement of Diversity. Nature, 163, 688-688.
[31] Chao, A. (1984) Nonparametric Estimation of the Number of Classes in a Population. Scandinavian Journal of Statistics, 11, 265-270.
[32] Mariat, D., Firmesse, O., Levenez, F., Guimaraes, V.D., Sokol, H., Doré, J., et al. (2009) The Firmicutes/Bacteroidetes Ratio of the Human Microbiota Changes with Age. BMC Microbiology, 9, 123. http://dx.doi.org/10.1186/1471-2180-9-123
[33] Wang, M., Ahrné, S., Jeppsson, B. and Molin, G. (2005) Comparison of Bacterial Diversity along the Human Intestinal Tract by Direct Cloning and Sequencing of 16S rRNA Genes. FEMS Microbiology Ecology, 54, 219-231. http://dx.doi.org/10.1016/j.femsec.2005.03.012
[34] Wang, X., Heazlewood, S.P., Krause, D.O. and Florin, T.H.J. (2003) Molecular Characterization of the Microbial Species That Colonize Human Ileal and Colonic Mucosa by Using 16S rDNA Sequence Analysis. Journal of Applied Microbiology, 95, 508-520.
[35] Hong, P.-Y., Croix, J.A., Greenberg, E., Gaskins, H.R. and Mackie, R.I. (2011) Pyrosequencing-Based Analysis of the Mucosal Microbiota in Healthy Individuals Reveals Ubiquitous Bacterial Groups and Micro-Heterogeneity. PLoS ONE, 6, e25042. http://dx.doi.org/10.1371/journal.pone.0025042
[36] Walker, A.W., Sanderson, J.D., Churcher, C., Parkes, G.C., Hudspith, B.N., Rayment, N., et al. (2011) High-Throughput Clone Library Analysis of the Mucosa-Associated Microbiota Reveals Dysbiosis and Differences between Inflamed and Non-Inflamed Regions of the Intestine in Inflammatory Bowel Disease. BMC Microbiology, 11, 7. http://dx.doi.org/10.1186/1471-2180-11-7
[37] Bibiloni, R., Mangold, M., Madsen, K.L., Fedorak, R.N. and Tannock, G.W. (2006) The Bacteriology of Biopsies Differs between Newly Diagnosed, Untreated, Crohn’s Disease and Ulcerative Colitis Patients. Journal of Medical Microbiology, 55, 1141-1149. http://dx.doi.org/10.1099/jmm.0.46498-0
[38] Nemoto, H., Kataoka, K., Ishikawa, H., Ikata, K., Arimochi, H., Iwasaki, T., et al. (2012) Reduced Diversity and Imbalance of Fecal Microbiota in Patients with Ulcerative Colitis. Digestive Disease and Sciences, 57, 2955-2964. http://dx.doi.org/10.1007/s10620-012-2236-y
[39] Bibiloni, R., Simon, M.A., Albright, C., Sartor, B. and Tannock, G.W. (2005) Analysis of the Large Bowel Microbiota of Colitic Mice Using PCR/DGGE. Letters in Applied Microbiology, 41, 45-51.
[40] Ott, S.J., Musfeldt, M., Wenderoth, D.F., Hampe, J., Brant, O., Folsch, U.R., et al. (2004) Reduction in Diversity of the Colonic Mucosa Associated Bacterial Microflora in Patients with Active Inflammatory Bowel Disease. Gut, 53, 685-693. http://dx.doi.org/10.1136/gut.2003.025403
[41] Eckburg, P.B., Bik, E.M., Bernstein, C.N., Purdom, E., Dethlefsen, L., Sargent, M., et al. (2005) Diversity of the Human Intestinal Microbial Flora. Science, 308, 1635-1638.
[42] Green, G.L., Brostoff, J., Hudspith, B., Michael, M., Mylonaki, M., Rayment, N., et al. (2006) Molecular Characterization of the Bacteria Adherent to Human Colorectal Mucosa. Journal of Applied Microbiology, 100, 460-469. http://dx.doi.org/10.1111/j.1365-2672.2005.02783.x
[43] Conte, M.P., Schippa, S., Zamboni, I., Penta, M., Chiarini, F., Seganti, L., et al. (2006) Gut-Associated Bacterial Microbiota in Paediatric Patients with Inflammatory Bowel Disease. Gut, 55, 1760-1767. http://dx.doi.org/10.1136/gut.2005.078824
[44] Mylonaki, M., Rayment, N.B., Rampton, D.S., Hudspith, B.N. and Brostoff, J. (2005) Molecular Characterization of Rectal Mucosa-Associated Bacterial Flora in Inflammatory Bowel Disease. Inflammatory Bowel Disease, 11, 481-487. http://dx.doi.org/10.1097/01.MIB.0000159663.62651.4f
[45] Andoh, A., Imaeda, H., Aomatsu, T., Inatomi, O., Bamba, S., Sasaki, M., et al. (2011) Comparison of the Fecal Microbiota Profiles between Ulcerative Colitis and Crohn’s Disease Using Terminal Restriction Fragment Length Polymorphism Analysis. Journal of Gastroenterology, 46, 479-486. http://dx.doi.org/10.1007/s00535-010-0368-4
[46] Aomatsu, T., Imaeda, H., Fujimoto, T., Takahashi, K., Yoden, A., Tamai, H., et al. (2012) Terminal Restriction Fragment Length Polymorphism Analysis of the Gut Microbiota Profiles of Pediatric Patients with Inflammatory Bowel Disease. Digestion, 86, 129-135.
[47] Andoh, A., Sakata, S., Koizumi, Y., Mitsuyama, K., Fujiyama, Y. and Benno, Y. (2007) Terminal Restriction Fragment Length Polymorphism Analysis of the Diversity of Fecal Microbiota in Patients with Ulcerative Colitis. Inflammatory Bowel Disease, 13, 955-962.
[48] Swidsinski, A., Loening-Baucke, V., Lochs, H. and Hale, L.P. (2005) Spatial Organization of Bacterial Flora in Normal and Inflamed Intestine: A Fluorescence in Situ Hybridization Study in Mice. World Journal of Gastroenterology, 11, 1131-1140.
[49] Lupp, C., Robertson, M.L., Wickham, M.E., Sekirov, I., Champion, O.L., Gaynor, E.C., et al. (2007) Host-Mediated Inflammation Disrupts the Intestinal Microbiota and Promotes the Overgrowth of Enterobacteriaceae. Cell Host and Microbe, 2, 119-129.
[50] Swidsinski, A., Loening-Baucke, V., Theissig, F., Engelhardt, H., Bengmark, S., Koch, S., et al. (2007) Comparative Study of the Intestinal Mucus Barrier in Normal and Inflamed Colon. Gut, 56, 343-350. http://dx.doi.org/10.1136/gut.2006.098160
[51] Kim, S.C., Tonkonogy, S.L., Karrasch, T., Jobin, C. and Sartor, R.B. (2007) Dual-Association of Gnotobiotic IL-10-/-Mice with 2 Nonpathogenic Commensal Bacteria Induces Aggressive Pancolitis. Inflammatory Bowel Disease, 13, 1457-1466. http://dx.doi.org/10.1002/ibd.20246
[52] Kleessen, B., Kroesen, A.J., Buhr, H.J. and Blaut, M. (2002) Mucosal and Invading Bacteria in Patients with Inflammatory Bowel Disease Compared with Controls. Scandinavian Journal of Gastroenterolo-
gy, 37, 1034-1041. http://dx.doi.org/10.1080/003655202320378220
[53] Gophna, U., Sommerfeld, K., Gophna, S., Doolittle, W.F. and Veldhuyzen van Zanten, S.J.O. (2006) Differences between Tissue-Associated Intestinal Microfloras of Patients with Crohn’s Disease and Ulcerative Colitis. Journal of Clinical Microbiology, 44, 4136-4141.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.