Share This Article:

Bacterial Foraging Algorithm based Parameter Estimation of Three WINDING Transformer

Abstract Full-Text HTML Download Download as PDF (Size:356KB) PP. 135-143
DOI: 10.4236/epe.2011.32017    4,871 Downloads   8,993 Views   Citations


Transformers are one of the main components of any power system. An accurate estimation of system be-haviour, including load flow studies, protection, and safe control of the system calls for an accurate equiva-lent circuit parameters of all system components such as generators, transformers, etc. This paper presents a methodology to estimate the equivalent circuit parameters of the Three Winding Transformer (TWT) using Bacterial Foraging Algorithm (BFA). The estimation procedure based on load test data at one particular op-erating point namely supply voltage, load currents, input power. The performance characteristics, such as efficiency and voltage regulation are considered along with the name plate data in order to minimize the er-ror between the estimated and measured data. The estimation procedure is demonstrated with a sample three winding transformer and the results are compared against the directly measured performance of TWT and genetic algorithm optimization results. The simulation results show the ability of the proposed technique to capture the true values of the machine parameters and the superiority of the results obtained using the bacte-rial foraging algorithm.

Cite this paper

S. Subramanian and S. Padma, "Bacterial Foraging Algorithm based Parameter Estimation of Three WINDING Transformer," Energy and Power Engineering, Vol. 3 No. 2, 2011, pp. 135-143. doi: 10.4236/epe.2011.32017.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. H. Thilagar and G. S. Rao, “Parameter Estimation of Three-Winding Transformer Using Genetic Algorithm,” Engineering Applications of Artificial Intelligence, Vol.15, No.5, 2002, pp. 429-437. doi:10.1016/S0952-1976(02)00087-8
[2] B. A. Mork, “Five-Legged Wound-Core Transformer Model: Derivation, Parameters, Implementation, and Evaluation,” IEEE Transactions on Power Delivery, Vol. 14, No.4, 1999, pp. 1519-1525. doi:10.1109/61.796249
[3] X. S. Chen and S. S. Venkata, “A Three-Phase Three- Winding Core-Type Transformer Model for Low-Frequency Transient Studies,” IEEE Transactions on Power Delivery, Vol. 12, No.2, 1997, pp. 775-781. doi:10.1109/61.584369
[4] H. K. M. Youssef and K. M. Naggar, “Genetic-Based Algorithm for Identification Synchronous Machine Parameter Using Short Circuit Tests,” International Journal of Energy Research, 2000, Vol. 24, No. 10, pp. 877-885. doi:10.1002/1099-114X(200008)24:10<877::AID-ER630>3.0.CO;2-8
[5] P. Pillay, V. Levin, P. Otaduy and J. Kueck, “In-Situ Induction Motor Efficiency Determination Using the Genetic Algorithm,” IEEE Transactions on Energy Conversion, Vol.13, No.4, 1998, pp. 326-333. doi:10.1109/60.736318
[6] Bachir abdelhadi, Azeddine Benoudijit and Nasreddine Nait-Said, “Application of Genetic Algorithm with a Novel Adaptive Scheme for the Identification of Induction Machine Parameters,” IEEE Transactions on Energy Conversion, Vol.20, No.2, 2005, pp. 284-291. doi:10.1109/TEC.2004.841508
[7] S. H. Thilagar and G. S. Rao, “In-Situ Determination of Transformer Winding Temperature Rise Using Genetic Algorithm Based Parameter Estimation,” Proceedings of the International Conference Electrical and Computer Engineering, Dhaka, 26-28 December 2002, pp. 91-94.
[8] B. L. Peacock, M. Steurer, J. Langston, T. Baldwin and S. Henry, “Estimation of Parameters for Digital Modelling of Saturation Effects for a Transformer Model for a Real-Time Simulator,” Proceedings of the 41st Southeastern Symposium System Theory, University of Tennessee Space Institute Tullahoma, USA, 15-17 March 2009, pp. 306-310. doi: 10.1109/SSST.2009.4806811
[9] S. A. Soliman, R. A. Alammari and M. A. Mostafa, “On-Line Estimation of Transformer Model Parameters,” Proceedings of the Large Engineering System, 28-30 July 2004, Halifax, pp. 170-178. doi: 10.1109/LESCPE.2004.1356295
[10] F. Alonge, F. D’lppolito, G. Ferrante and F. M. Raimondi, “Parameter Identification of Induction Motor Model Using Genetic Algorithms,” IEE Proceedings on Control Theory Applications, Vol. 145, No. 6, 1998, pp. 587-597. doi:10.1049/ip-cta:19982408
[11] J. Wang, A. F. Witulski, J. L. Vollin, T. K. Phelps and G. I. Cardwell, “Derivation, Calculation and Measurement of Parameters for a Multi-Winding Transformer Electrical Model,” Proceedings of Applied Power Electronics, Dallas, 14-18 March 1999, pp. 220-226. doi: 10.1109/APEC.1999.749513
[12] R. K. Ursem and Vadstrup, “Parameter Identification of Induction Motors Using Differential Evolution,” Proceedings of Evolutionary Computation, Canberra, 8-12 December 2003, pp. 790-796. doi: 10.1109/CEC.2003.1299748
[13] K. S. Huang, W. Kent, Q. H. Wu and D. R. Turner, “Parameter Identification of an Induction Machine Using Genetic Algorithms,” Proceedings of the Computer Aided Control System Design, USA, 22-27 August, 1999, pp. 510-515. doi: 10.1109/CACSD.1999.808700
[14] A. Keyhani, A .Tsai and S. Sebo, “Modeling and Parameter Estimation of Power Transformers for the Study of High Frequency System Transients,” Proceedings of Circuits and Systems, Champaign, 14-16 August 1989, pp. 258-264. doi: 10.1109/MWSCAS.1989.101842
[15] P. Y. Chung, M. Dolent and R. D. Lorenz, “Parameter Identification for Induction Machines by Continuous Genetic Algorithms,” Proceedings ANNIE, St. Louis, 5-8 November 2000, pp. 1-13.
[16] O. Amoda, D. Tylavsky, G. McCulla and W. Knuth, “Sensitivity of Estimated Parameters in Transformer Thermal Modeling,” Proceedings NAPS, Starkville, 4-6 October 2009, pp. 1-6. doi: 10.1109/NAPS.2009.5484079
[17] D. Meister and M. A. Gon?alves de Oliveira, “The Use of the Least Squares Method to Estimate the Model Parameters of a Transformer,” Proceedings of Electrical Power Quality and Utilization, Lodz, 15-17 September 2009, pp. 1-6. doi: 10.1109/EPQU.2009.5318853
[18] A. Suppitaksakul and V. Saelee, “Application of Artificial Neural Networks for Electrical Losses Estimation in Three-Phase Transformer,” Proceedings of Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Pattaya, 6-9 May 2009, pp. 248-251. doi: 10.1109/ECTICON.2009.5137002
[19] J. J. Wu, H. Sugimoto and C. K. Wang, “Parameter Estimate Modeling of Electronic Transformer,” Proceedings of Power Electronics and Motion Control, Shanghai, 14-16 August 2006, pp. 1-8. doi: 10.1109/IPEMC.2006.4778192
[20] M. R. Feyzi and M. Sabahi, “Online Dynamic Parameter Estimation of Transformer Equivalent Circuit,” Proceedings of Power Electronics and Motion Control, Shanghai, 14-16 August 2006, pp. 1-5. doi: 10.1109/IPEMC.2006.4778186
[21] B. K. Panigrahi and V. R. Pandi, “Bacterial Foraging Optimisation: Nelder-Mead Hybrid Algorithm for Economic Load Dispatch,” IET Generation, Transmission and Distribution, Vol. 2, No. 4, 2008, pp. 556-565. doi:10.1049/iet-gtd:20070422
[22] M. Tripathy and S. Mishra, “Bacteria Foraging Based Solution to Optimize Both Real Power Loss and Voltage Stability Limit,” IEEE Transaction on Power Systems, Vol. 22, No. 1, 2007, pp. 240-248. doi:10.1109/TPWRS.2006.887968
[23] W. J. Tang, Q. H. Wu and J. R. Saunders, “Bacterial Foraging Algorithm for Dynamic Environments,” Proceedings of the IEEE Congress Evolutionary Computation, Canada, 16-21 July 2006, pp. 1324-1330. doi: 10.1109/CEC.2006.1688462
[24] D. P. Acharya, G. Panda, S. Mishra and Y. V. S. Lakshmi, “Bacteria Foraging Based Independent Component Analysis,” Proceeding of the Computational Intelligence and Multimedia Applications, Sivakasi, 13-15 December, 2007, pp. 527-531. doi: 10.1109/ICCIMA.2007.126
[25] G. Noriega, J. Restrepo, V. Guzmán, M. Gimenez and J. Aller, “On Line Parameter Estimation of Electric Systems Using the Bacterial Foraging Algorithm,” Proceedings of the Power Electronics and Applications, Barcelona, 8-10 September 2009, pp. 1-7.
[26] P. G. Kou, J. Z. Zhou, C. S. Li, Y. Y. He and H. He, “Identification of Hydraulic Turbine Governor System Parameters Based on Bacterial Foraging Optimization Algorithm,” Proceedings of the Natural Computation, ICNC, Shandong, China, 10-12 August 2010, pp. 3339- 3343. doi: 10.1109/ICNC.2010.5583639

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.