Share This Article:

Chemical Quality Indexes of Mullet (Mugil platanus) Stored on Ice

Full-Text HTML XML Download Download as PDF (Size:570KB) PP. 1030-1039
DOI: 10.4236/fns.2014.511114    4,136 Downloads   4,819 Views   Citations

ABSTRACT

The present study was conducted aiming at establishing chemical quality parameters to assess ice stored mullet (0 ± 1) through the evaluation of nucleotide (adenosine monophosphate [AMP], inosine [HxR] and hypoxanthine [Hx]) degradation, biogenic amine (histamine [HI], putrescine [PU], cadaverine [CA] and tyramine [TI]) quantification and mesophilic and psychrotrophic bacteria count monitoring. The microbial load of 7 log CFU·g1 established as maximum acceptable limit was attained after the 20th day of ice storage. IMP concentration declined during the storage period to levels below the detection limit. HxR content increased only up to time T3 and then declined. Hx level increased during all the storage period. CA and HI content increase was not observed, on the other hand, PU and TI contents significantly increased (p < 0.05) at time T5. We concluded that IMP and Hx concentrations can be adequate parameters to assess mullet quality under the study conditions. HxR proved to be adequate to evaluate the freshness of mullet in the first days of storage while the amines, PU and TI, can be used to assess loss of quality. Mullet obtained in conditions similar to those of the present study and maintained at 0 ± 1can be consumed up to the 20th storage day.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Andrade, S. , Mársico, E. , Godoy, R. , Pacheco, S. , Franco, R. , Mano, S. and Conte-Junior, C. (2014) Chemical Quality Indexes of Mullet (Mugil platanus) Stored on Ice. Food and Nutrition Sciences, 5, 1030-1039. doi: 10.4236/fns.2014.511114.

References

[1] Food and Agriculture Organization (FAO) (2012) El Estado Mundial de la Pesca y laAcuicultura 2012. Roma.
[2] Huss, H.H. (1999) El Pescado Fresco: Su Calidad y Cambios de su Calidad. Dinamarca.
[3] Visentainer, J.V., Carvalho, P.O., Ikegaki, M. and Park, Y.K. (2000) Concentracao de ácido eicosapentaenóico (EPA) e ácido docosahexaenóico (DHA) em peixes marinhos da costa brasileira. Ciência e Tecnologia de Alimentos, 20, 90-93. http://dx.doi.org/10.1590/S0101-20612000000100017
[4] Ashie, I.N.A., Smith, J.P. and Simpson, B.K. (1996) Spoilage and Shelf-Life Extension of Fresh Fish and Shellfish. Critical Reviews in Food Science and Nutrition, 36, 87-121.
http://dx.doi.org/10.1080/10408399609527720
[5] Gram, L. and Huss, H.H. (1996) Microbiological Spoilage of Fish and Fish Products. International Journal of Food Microbiology, 33, 121-137. http://dx.doi.org/10.1016/0168-1605(96)01134-8
[6] Ababouch, L.H., Souibri, L., Rhaliby, K., Ouahdi, O., Battal, M. and Busba, F.F. (1996) Quality Changes in Sardines (Sardinapilchardus) Stored in Ice and at Ambient Temperature. Food Microbiology, 13, 123-132. http://dx.doi.org/10.1006/fmic.1996.0016
[7] Gram, L. and Dalgaard, P. (2002) Fish Spoilage Bacteria—Problems and Solutions. Current Opinion in Biotechnology, 13, 262-266. http://dx.doi.org/10.1016/S0958-1669(02)00309-9
[8] Aubourg, S.P., Quitral, V., Larraín, M.A., Rodríguez, A., Gómez, J., Maier, L. and Vinagre, J. (2007) Autolytic Degradation and Microbiological Activity in Farmed Coho Salmon (Oncorhynchuskisutch) during Chilled Storage. Food Chemistry, 104, 369-375.
http://dx.doi.org/10.1016/j.foodchem.2006.11.066
[9] ?zogul, F., ?zogul, Y. and Kuley, E. (2008) Nucleotide Degradation and Biogenic Amine Formation of Wild White Grouper (Epinephelusaeneus) Stored in Ice and at Chill Temperature (4℃). Food Chemistry, 108, 933-941. http://dx.doi.org/10.1016/j.foodchem.2007.11.070
[10] Özogul, Y., Boga, E.K., Tokur, B. and Özogul, F. (2011) Changes in Biochemical, Sensory and Microbiological Quality Indices of Common Sole (Soleasolea) from the Mediterranean Sea, during Ice Storage. Turkish Journal of Fisheries and Aquatic Sciences, 11, 243-251.
http://dx.doi.org/10.4194/trjfas.2011.0209
[11] Song, Y., Luo, Y., You, J., Shen, H. and Hu, S. (2012) Biochemical, Sensory and Microbiological Attributes of Bream (Megalobramaamblycephala) during Partial Freezing and Chilled Storage. Journal of the Science of Food and Agriculture, 92, 197-202. http://dx.doi.org/10.1002/jsfa.4572
[12] Li, T., Li, J. and Hu, W. (2013) Changes in Microbiological, Physicochemical and Muscle Proteins of Post Mortem Large Yellow Croaker (Pseudosciaenacrocea). Food Control, 34, 514-520.
http://dx.doi.org/10.1016/j.foodcont.2013.05.028
[13] Rzepka, M., ?zogul, F., Surówka, K. and Michalczyk, M. (2013) Freshness and Quality Attributes of Cold Stored Atlantic Bonito (Sardasarda) Gravad. International Journal of Food Science and Technology, 48, 1318-1326. http://dx.doi.org/10.1111/ijfs.12094
[14] Veciana-Nogués, M.C., Mariné-Font, A. and Vidal-Carou, M.C. (1997) Biogenic Amines as Hygienic Quality Indicators of Tuna. Relationship with Microbial Counts, ATP-Related Compounds Volatile Amines and Organoleptic Changes. Journal of Agricultural and Food Chemistry, 45, 2036-2041. http://dx.doi.org/10.1021/jf960911l
[15] K?í?ek, M., Pavlí?ek, T. and Vácha, F. (2002) Formation of Selected Biogenic Amines in Carp Meat. Journal Science of Food and Agriculture, 82, 1088-1093. http://dx.doi.org/10.1002/jsfa.1154
[16] Rezaei, M., Montazeri, N., Langrudi, H.E., Mokhayer, B., Parviz, M. and Nazarinia, A. (2007) The Biogenic Amines and Bacterial Changes of Farmed Rainbow Trout (Oncorhynchus mykiss) Stored in Ice. Food Chemistry, 103, 150-154. http://dx.doi.org/10.1016/j.foodchem.2006.05.066
[17] Rodrigues, B.L., álvares, T.S., Costa, M.P., Sampaio, G.S.L., La Torre, C.A., Mársico, E.T. and Conte Junior, C.A. (2013) Concentration of Biogenic Amines in Rainbow Trout (Oncorhynchus mykiss) Preserved in Ice and Its Relationship with Physicochemical Parameters of Quality. Journal of Aquaculture Research & Development, 4, 1-4. http://dx.doi.org/10.4172/2155-9546.1000174
[18] Rodriguez, M.B.R., Carneiro, C.S., Feijó, M.B.S., Conte Júnior, C.A. and Mano, S.B. (2014) Bioactive Amines: Aspects of Quality and Safety in Food. Food and Nutrition Sciences, 5, 138-146.
[19] Sillas Santos, M.H. (1996) Biogenic Amines: Their Importance in Foods. International Journal of Food Microbiology, 29, 213-231. http://dx.doi.org/10.1016/0168-1605(95)00032-1
[20] Miranda, L.V. and Carneiro, M.H. (2007) A pesca da tainha Mugilplatanus (Perciformes: Mugilidae) desembarcada no Estado de Sao Paulo—Subsídio ao ordenamento. Série Relatórios Técnicos, 30, 1-13.
[21] American Public Health Association (APHA) (2001) Compendium of Methods for the Microbiological Examination of Foods. Washington DC.
[22] Andrade, S.C.S., Mársico, E.T., Franco, R.M., Godoy, R.L.O., Pacheco, S., Queiroz, M.F. and Guimaraes, C.F.M. (2012) Validade comercial de sardinhas inteiras e refrigeradas avaliada por análises físico-químicas, bacteriológicas e sensorial. Ciência Rural, 42, 1901-1907.
http://dx.doi.org/10.1590/S0103-84782012005000077
[23] Özogul, F., Taylor, K.D.A., Quantck, P.C. and Özogul, Y. (2000) A Rapid HPLC-Determination of ATP-Related Compounds and Its Application to Herring Stored under Modified Atmosphere. International Journal of Food Science and Technology, 35, 549-554.
http://dx.doi.org/10.1111/j.1365-2621.2000.00405.x
[24] Karube, I., Matsuoka, H., Suzuki, S., Watanabe, E. and Toyama, K. (1984) Determination of Fish Freshness with an Enzyme Sensor System. Journal of Agriculture and Food Chemistry, 32, 314-319. http://dx.doi.org/10.1021/jf00122a034
[25] Burns, B.G., Ke, P.J. and Irvine, B.B. (1985) Objective Procedure for Fish Freshness Evaluation Based on Nucleotide Changes Using a HPLC System. Canadian Technical Report of Fisheries and Aquatic Sciences, No. 1373.
[26] Luong, J.H.T., Male, K.B., Masson, C. and Nguyen, A.L. (1992) Hypoxanthine Ratio Determination in Fish Extract Using Capillary Electrophoresis and Immobilized Enzymes. Journal of Food Science, 57, 77-81. http://dx.doi.org/10.1111/j.1365-2621.1992.tb05429.x
[27] Association of Analytical Communities (AOAC) (2002) Official Methods of Analysis. Association of Official Analytical Chemists, Arlington.
[28] Cohen, S.A. and Michaud, D.P. (1993) Synthesis of a Fluorescent Derivatizing Reagent, 6-Aminoquinolyl-N-Hydroxysuccinimidyl Carbamate, and Its Application for the Analysis of Hydrolysate Amino Acids via High-Performance Liquid Chromatography. Analytical Biochemistry, 211, 279-287. http://dx.doi.org/10.1006/abio.1993.1270
[29] Barany, J. and Roberts, T.A. (1994) A Dynamic Approach to Predicting Bacterial Growth in Food. International Journal of Food Microbiology, 23, 277-294.
http://dx.doi.org/10.1016/0168-1605(94)90157-0
[30] International Comission on Microbiological Specifications for Food (ICMSF) (1986) Microorganisms in Foods. 2. Sampling for Microbiological Analysis: Principles and Specific Applications. University of Toronto Press, Toronto.
[31] Erkan, N. and Özden, Ö. (2008) Quality Assessment of Whole and Gutted Sardines (Sardina pilchardus) Stored in Ice. International Journal of Food Science and Technology, 43, 1549-1559. http://dx.doi.org/10.1111/j.1365-2621.2007.01579.x
[32] Chong, C.Y., Bakar, F.A., Rahman, R.A., Bakar, J. and Zaman, M.Z. (2012) Biogenic Amine, Amino Acids and Microflora Changes in Indian Mackerel (Rastrellinger kanagurta) Stored at Ambient (25℃ - 29℃) and Ice Temperature (0℃). Journal of Food Science and Technology.
http://dx.doi.org/10.1007/s13197-012-0621-3
[33] Carracosa, C., Millán, R., Saavedra, P., Jaber, J.R., Montenegro, T., Raposo, A., Pérez, E. and Sanjuán, E. (2014) Predictive Models for Bacterial Growth in Sea Bass (Dicentrarchus labrax) Stored in Ice. International Journal of Food Science and Technology, 49, 354-363.
http://dx.doi.org/10.1111/ijfs.12307
[34] Zaragozá, P., Fernández-Segovia, I., Fuentes, A., Vivancos, J.L., Ros-Lis, J.V., Barat, J.M. and Martínez-Mánez, R. (2014) Monitorization of Atlantic Salmon (Salmo salar) Spoilage Using an Optoelectronic Nose. Sensors and Actuators B, 195, 478-485.
http://dx.doi.org/10.1016/j.snb.2014.01.017
[35] Ehsani, A. and Jasour, M.S. (2012) Microbiological Properties and Biogenic Amines of Whole Pike-Perch (Sander Lucioperca, Linnaeus 1758): A Perspective on Fish Safety during Postharvest Handling Practices and Frozen Storage. Journal of Food Science, 77, M664-M668.
[36] Siripatrawan, U., Sanguandeekul, R. and Narakaew, V. (2009) An Alternative Freshness Index Method for Modified Atmosphere Packaged Abalone Using an Artificial Neural Network. Food Science and Technology, 42, 343-349. http://dx.doi.org/10.1016/j.lwt.2008.06.008
[37] Özogul, Y., Boga, E.K., Tokur, B. and Özogul, F. (2011) Changes in Biochemical, Sensory and Microbiological Quality Indices of Common Sole (Solea solea) from the Mediterranean Sea, during Ice Storage. Turkish Journal of Fisheries and Aquatic Sciences, 11, 243-251.
http://dx.doi.org/10.4194/trjfas.2011.0209
[38] Massa, A.E., Palacios, D.L., Paredi, M.E. and Crupkin, M. (2005) Postmortem Changes in Quality Indices of Ice-Stored Flounder (Paralichthys patagonicus). Journal of Food Biochemistry, 29, 570-590. http://dx.doi.org/10.1111/j.1745-4514.2005.00050.x
[39] Özogul, F., Özogul, Y. and Kuley, E. (2007) Nucleotide Degradation in Sardine (Sardina pilchardus) Stored in Different Storage Condition at 4℃. Journal of Fisheries Sciences, 1, 13-19.
http://dx.doi.org/10.3153/jfscom.2007002
[40] Ocano-Higuera, V.M., Marquez-Ríos, E., Canizales-Dávila, M., Castillo-Yánez, F.J., Pacheco-Aguilar, R., Lugo-Sánchez, M.E., García-Orozco, K.D. and Graciano-Verdugo, A.Z. (2009) Postmortem Changes in Cazon Fish Muscle Stored on Ice. Food Chemistry, 116, 933-938.
http://dx.doi.org/10.1016/j.foodchem.2009.03.049
[41] Li, T., Li, J. and Hu, W. (2013) Changes in Microbiological, Physicochemical and Muscle Proteins of Post Mortem Large Yellow Croaker (Pseudosciaena crocea). Food Control, 34, 514-520.
http://dx.doi.org/10.1016/j.foodcont.2013.05.028
[42] Contreras-Guzmán, E.S. (1994) Bioquímica de pescado e derivados. FUNEP, Jaboticabal.
[43] Lakshmanan, P.T., Antony, P.D. and Gopakumar, K. (1996) Nucleotide Degradation and Quality Changes in Mullet (Liza corsula) and Pearlspot (Etroplus suratensis) in Ice and at Ambient Temperatures. Food Control, 7, 277-283. http://dx.doi.org/10.1016/S0956-7135(96)00015-1
[44] Özogul, Y. and Özogul, F. (2002) Degradation Products of Adenine Nucleotide in Rainbow Trout (Oncorhynchus mykiss) Stored in Ice and in Modified Atmosphere Packaging. Turkish Journal of Zoology, 26, 127-130.
[45] Ehira, S. and Uchiyama, H. (1973) Formation of Inosine and Hypoxanthine in Fish during Storage in Ice. Bulletin of Tokai Regional Fisheries Research Laboratory, 75, 63-73.
[46] Ehira, S. and Uchiyama, H. (1987) Determination of Freshness Using the K Value and Comments on Some Other Biochemical Changes in Relation to Freshness. In: Kramer, D.E. and Liston, J., Eds., Seafood Quality Determination, Elsevier Science Publishers B. V., Amsterdam, 185-207.
[47] Izquierdo-Pulido, M.L., Hatae, K. and Haard, N.F. (1992) Nucleotide Catabolism and Changes in Texture Indices during Ice Storage of Cultured Sturgeon (Acipenser transmontanus). Journal of Food Biochemistry, 16, 173-192. http://dx.doi.org/10.1111/j.1745-4514.1992.tb00444.x
[48] Saito, T., Aarai, K. and Matsuyoshi, M. (1959) A New Method for Estimating the Freshness of Fish. Bulletin of the Japanese Society of Scientific, 24, 749-750. http://dx.doi.org/10.2331/suisan.24.749
[49] Özogul, F., Gokbulut, C., Özogul, Y. and Özyurt, G. (2006) Biogenic Amine Production and Nucleotide Ratios in Gutted Wild Sea Bass (Dicentrarchus labrax) Stored in Ice, Wrapped in Aluminium Foil and Wrapped in Cling Film at 4℃. Food Chemistry, 98, 76-84.
http://dx.doi.org/10.1016/j.foodchem.2005.04.037
[50] Fiechter, G., Sivec, G. and Mayer, H.K. (2013) Application of UHPLC for Simultaneous Analysis of Free Amino Acids and Biogenic Amines in Ripened Acid-Curd Cheeses. Journal of Chromatography B, 927, 191-200. http://dx.doi.org/10.1016/j.jchromb.2012.12.006
[51] Ordónez, J.L., Callejón, R.M., Morales, M.L. and García-Parrilla, M.C. (2013) A Survey of Biogenic Amines in Vinegars. Food Chemistry, 141, 2713-2719.
http://dx.doi.org/10.1016/j.foodchem.2013.05.087
[52] Lee, Y., Kung, H., Lin, C., Hwang, C., Lin, C. and Tsai, Y. (2012) Histamine Production by Enterobacter aerogenes in Tuna Dumpling Stuffing at Various Storage Temperatures. Food Chemistry, 131, 405-412. http://dx.doi.org/10.1016/j.foodchem.2011.08.072
[53] Hu, Y., Huang, Z., Li, J. and Yang, H. (2012) Concentrations of Biogenic Amines in Fish, Squid and Octopus and Their Changes during Storage. Food Chemistry, 135, 2604-2611.
http://dx.doi.org/10.1016/j.foodchem.2012.06.121
[54] Lehane, L. and Olley, J. (2000) Histamine Fish Poisoning Revisited. International Journal of Food Microbiology, 58, 1-37. http://dx.doi.org/10.1016/S0168-1605(00)00296-8
[55] Silva, S.C., Fernandez, S.Y., Fonseca, M.J., Mársico, E.T. and Sao Clemente, S.C. (2011) Aminas Biogênicas nos Alimentos: Revisao de literatura. Higiene Alimentar, 25, 45-50.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.