Share This Article:

Large-Scale Structure Formation via Quantum Fluctuations and Gravitational Instability

Full-Text HTML Download Download as PDF (Size:567KB) PP. 634-656
DOI: 10.4236/ijg.2014.56058    4,201 Downloads   5,256 Views  

ABSTRACT

This is a review of the status of the universe as described by the standard cosmological model combined with the inflationary paradigm. Their key features and predictions, consistent with the WMAP (Wilkinson Microwave Anisotropies Probe) and Planck Probe 2013 results, provide a significant mechanism to generate the primordial gravitational waves and the density perturbations which grow over time, and later become the large-scale structure of the universe—from the quantum fluctuations in the early era to the structure observed 13.7 billion later, our epoch. In the single field slow-roll paradigm, the primordial quantum fluctuations in the inflaton field itself translate into the curvature and density perturbations which grow over time via gravitational instability. High density regions continuously attract more matter from the surrounding space, the high density regions become more and more dense in time while depleting the low density regions. At late times the highest density regions peaks collapse into the large structure of the universe, whose gravitational instability effects are observed in the clustering features of galaxies in the sky. Thus, the origin of all structure in the universe probably comes from an early era where the universe was filled with a scalar field and nothing else.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Porcelli, F. and Scibona, G. (2014) Large-Scale Structure Formation via Quantum Fluctuations and Gravitational Instability. International Journal of Geosciences, 5, 634-656. doi: 10.4236/ijg.2014.56058.

References

[1] Weinberg, S. (1972) Gravitation and Cosmology. John Wiley & Sons, Hoboken.
[2] Peebles, P.J.E. (1980) The Large-Scale Structure of the Universe. Princeton University Press, Princeton.
[3] Peebles, P.J.E. (1993) Principles of Physical Cosmology. Princeton University Press, Princeton.
[4] Padmanabhan, T. (1993) Structure Formation in the Universe. Cambridge University Press, Cambridge.
[5] Mukhanov, V. (2005) Physical Foundations of Cosmology. Cambridge University Press, New York.
[6] Weinberg, S. (2008) Cosmology. Oxford University Press, Oxford.
[7] Starobinsky, A.A. (1979) Spectrum of Relict Gravitational Radiation and the Early State of the Universe. JETP Letters, 30, 682-685.
[8] Starobinsky, A.A. (1980) A New Type of Isotropic Cosmological Model without Singularity. Physics Letters B, 91, 99-102.
http://dx.doi.org/10.1016/0370-2693(80)90670-X
[9] Mukhanov, V. and Chibisov, G. (1981) Quantum Fluctuation and ‘Nonsingular’ Universe. JETP Letters, 33, 532-535.
[10] Guth, A.H. (1981) Inflationary Universe: A Possible Solution to the Horizon Flatness Problems. Physical Review D, 23, 347-356.
http://dx.doi.org/10.1103/PhysRevD.23.347
[11] Chibisov, G. and Mukhanov, V. (1982) Galaxy Formation and Phonons. Monthly Notices of the Royal Astronomical Society, 200, 535-550.
[12] Albrecht, A. and Steinhardt, P.J. (1982) Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Physical Review Letters, 48, 1220-1223.
http://dx.doi.org/10.1103/PhysRevLett.48.1220
[13] Linde, A.D. (1982) A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness Homogeneity, Isotropy and Primordial Monopole Problems. Physics Letters B, 108, 389-393.
]http://dx.doi.org/10.1016/0370-2693(82)91219-9
[14] Linde, A.D. (1982) Coleman-Weinberg Theory and the New Inflationary Universe Scenario. Physics Letters B, 114, 431-435.
http://dx.doi.org/10.1016/0370-2693(82)90086-7
[15] Linde, A. (1982) Temperature Dependence of Coupling Constant and the Phase Transition in the Coleman-Weinberg Theory. Physics Letters B, 116, 340-342.
http://dx.doi.org/10.1016/0370-2693(82)90294-5
[16] Linde, A. (1982) Scalar Field Fluctuation in the Expanding Universe and the New Inflationary Universe Scenario. Physics Letters B, 116, 335-339.
http://dx.doi.org/10.1016/0370-2693(82)90293-3
[17] Linde, A.D. (1983) Chaotic Inflation. Physics Letters B, 129, 177-181.
http://dx.doi.org/10.1016/0370-2693(83)90837-7
[18] Linde, A. (1985) Initial Conditions for Inflation. Physics Letters B, 162, 281-286.
http://dx.doi.org/10.1016/0370-2693(85)90923-2
[19] Mukhanov, V. and Chibisov, G. (1985) Gravitational Instability of the Universe Filled with a Scalar Field. JETP Letters, 41, 493-496.
[20] Goncharov, A.S., Linde, A.D. and Mukhanov, V.F. (1987) The Global Structure of the Inflationary Universe. International Journal of Modern Physics A, 2, 561-591.
http://dx.doi.org/10.1142/S0217751X87000211
[21] Linde, A.D., Linde, D.A. and Mezhlumian, A. (1994) From the Big Bang Theory to the Theory of a Stationary Universe. Physical Review D, 49, 1783-1826.
http://dx.doi.org/10.1103/PhysRevD.49.1783
[22] Liddle, A.R. (1999) An Introduction to Cosmological Inflation. 36 p. arXiv: astro-ph 9901124v1
[23] Lyth, D.H. and Riotto, A. (1999) Particle Physics Models of Inflation and the Cosmological Density Perturbation. Physics Reports, 314, 1-146.
http://dx.doi.org/10.1016/S0370-1573(98)00128-8
[24] Liddle, A. and Lyth, D. (2000) Cosmological Inflation and Large-Scale Structure. Cambridge University Press, Cambridge.
[25] Brandenburger, R.H. (2001) A Status Review of Inflationary Cosmology.
[26] Guth, A.H. (2004) Inflation.
[27] Mukhanov, V.F. (2004) CMB Quantum Fluctuations and the Predictive Power of Inflation. International Journal of Theoretical Physics, 43, 623.
[28] Linde, A.D. (1990) Particle Physics and Inflationary Cosmology. Harwood Academic, Chur.
[29] Acquaviva, V., Bartolo, N., Matarrese, S. and Riotto, A. (2003) Gauge-Invariant Second-Order Perturbations and Non-Gaussianity from Inflation. Nuclear Physics B, 667, 119-148.
http://dx.doi.org/10.1016/S0550-3213(03)00550-9
[30] Maldacena, J. (2003) Non-Gaussian Features of Primordial Fluctuations in Single Field Inflationary Models. Journal of High Energy Physics, 2003, 013.
[31] Linde, A.D. (2008) Inflationary Cosmology. Lecture Notes in Physics, 738, 1-54.
[32] Linde, A.D. (1991) Axions in Inflationary Cosmology. Physics Letters B, 259, 38-47.
http://dx.doi.org/10.1016/0370-2693(91)90130-I
[33] Linde, A.D. (1994) Hybrid Inflation. Physical Review D, 49, 748-754.
http://dx.doi.org/10.1103/PhysRevD.49.748
[34] Linde, A.D. (1986) Eternally Existing Self-Reproducing Chaotic Inflationary Universe. Physics Letters B, 175, 395-400.
http://dx.doi.org/10.1016/0370-2693(86)90611-8
[35] Linde, A. (2002) Inflation, Quantum Cosmology and the Anthropic Principle.
[36] Kallosh, R. and Linde, A. (2003) P-Term, D-Term and F-Term Inflation. Journal of Cosmology and Astroparticle Physics, 2003, 008.
[37] Linde, A. (2013) Chaotic Inflation in Supergravity and Cosmic String Production. Physical Review D, 88, Article ID 123503.
[38] Kallosh, R. (2008) On Inflation in String Theory. Lecture Notes in Physics, 738, 119-156.
[39] Dvali, G.R. and Tye, S.H.H. (1999) Brane Inflation. Physics Letters B, 450, 72-82.
http://dx.doi.org/10.1016/S0370-2693(99)00132-X
[40] Quevedo, F. (2002) Lectures on String/Brane Cosmology. Classical and Quantum Gravity, 19, 5721-5779.
[41] Linde, A. (2006) Inflation and String Cosmology. Progress of Theoretical Physics Supplement, 163, 295-322.
http://dx.doi.org/10.1143/PTPS.163.295
[42] Veneziano, G. (1991) Scale Factor Duality For Classical and Quantum Strings. Physics Letters B, 265, 287-294.
http://dx.doi.org/10.1016/0370-2693(91)90055-U
[43] Gasperini, M. and Veneziano, G. (1993) Pre-Big-Bang in String Cosmology. Astroparticle Physics, 1, 317-339.
[44] Spergel, D. and Turok, N. (1992) Textures and Cosmic Structure. Scientific American, 266, 52-59.
http://dx.doi.org/10.1038/scientificamerican0392-52
[45] Nayeri, A., Brandenberger, R.H. and Vafa, C. (2006) Producing a Scale-Invariant Spectrum of Perturbations in a Hagedorn Phase of String Cosmology. Physical Review Letters, 97, Article ID: 021302.
http://dx.doi.org/10.1103/PhysRevLett.97.021302
[46] Brandenberger, R.H., Nayeri, A., Patil, S.P. and Vafa, C. (2007) Tensor Modes from a Primordial Hagedorn Phase of String Cosmology. Physical Review Letters, 98, Article ID: 231302.
http://dx.doi.org/10.1103/PhysRevLett.98.231302
[47] Brandenberger, R.H., Nayeri, A., Patil, S.P. and Vafa, C. (2007) String Gas Cosmology and Structure Formation. International Journal of Modern Physics A, 22, 3621-3642.
[48] Peter, P., Pinho, E.J.C. and Pinto-Neto, N. (2007) Noninflationary Model with Scale Invariant Cosmological Perturbations. Physical Review D, 75, Article ID: 023516.
http://dx.doi.org/10.1103/PhysRevD.75.023516
[49] Khoury, J., Ovrut, B.A., Steinhardt, P.J. and Turok, N. (2001) Ekpyrotic Universe: Colliding Branes and the Origin of the Hot Big Bang. Physical Review D, 64, Article ID: 123522.
http://dx.doi.org/10.1103/PhysRevD.64.123522
[50] Steinhardt, P.J. and Turok, N. (2005) The Cyclic Model Simplified. Talk Given at Dark Matter 2004, Santa Monica, CA: 18-20 February 2004; New Astronomy Reviews, 49, 43-57.
[51] Buchbinder, E.I., Khoury, J. and Ovrut, B.A. (2008) Non-Gaussianities in New Ekpyrotic Cosmology. Physical Review Letters, 100, Article ID: 171302.
[52] Berera, A. (1995) Warm Inflation. Physical Review Letters, 75, 3218-3221.
http://dx.doi.org/10.1103/PhysRevLett.75.3218
[53] Berera, A. (1996) Thermal Properties of an Inflationary Universe. Physical Review D, 54, 2519-2534.
http://dx.doi.org/10.1103/PhysRevD.54.2519
[54] Enqvist, K. and Sloth, M.S. (2002) Adiabatic CMB Perturbation in Pre-Big-bang String Cosmology. Nuclear Physics B, 626, 395-409.
http://dx.doi.org/10.1016/S0550-3213(02)00043-3
[55] Lyth, D.H. and Wands, D. (2002) Generating the Curvature Perturbations without an Inflaton. Physics Letters B, 254, 5-14.
[56] Morroi, T. and Takahashi, T. (2001) Effects of Cosmological Moduli Fields on Cosmic Microwave Background. Physics Letters B, 522, 215-221.
[57] Maldacena, J.M. (1998) The Large N limit of Superconformal Field Theories and Supergravity. Advances in Theoretical and Mathematical Physics, 2, 231-252.
[58] Arkani-Hamed, N., Creminelli, P., Mukohyamam, S. and Zaldarriaga, M. (2004) Ghost Inflation. Journal of Cosmology and Astroparticle Physics, 2004.
http://dx.doi.org/10.1088/1475-7516/2004/04/001
[59] Bartolo, N., Komatsu, E., Matarrese, S. and Riotto, A. (2004) Non-Gaussianity from Inflation: Theory and Observations. Physics Reports, 402, 103-266.
[60] Chen, X., Huang, M., kachru, S. and Shiu, G. (2007) Observational Signature and Non-Gaussianity of General Single Field. Journal of Cosmology and Astroparticle Physics, 2007.
http://dx.doi.org/10.1088/1475-7516/2007/01/002
[61] Chen, X., Easther, R. and Lim, E.A. (2007) Large Non-Gaussianity in Single Field Inflation. Journal of Cosmology and Astroparticle Physics, 2007.
http://dx.doi.org/10.1088/1475-7516/2007/06/023
[62] Armendáriz-Picón, C., Damour, T. and Mukhanov, V. (1999) K-Inflation. Physics Letters B, 458, 209-218.
http://dx.doi.org/10.1016/S0370-2693(99)00603-6
[63] Silverstein, E. and Tong, D. (2004) Scalar Speed Limits and Cosmology: Acceleration from D-Cceleration. Physical Review D, 70, Article ID: 103505.
http://dx.doi.org/10.1103/PhysRevD.70.103505
[64] Alishahiha, M., Silverstein, E. and Tong, D. (2004) DBI in the Sky: Non-Gaussianity from Inflation with a Speed Limit. Physical Review D, 70, Article ID: 123505.
http://dx.doi.org/10.1103/PhysRevD.70.123505
[65] Holman, R. and Tolley, A.J. (2008) Enhanced Non-Gaussianity from Excited Initial States. Journal of Cosmology and Astroparticle Physics, 2008.
http://dx.doi.org/10.1088/1475-7516/2008/05/001
[66] Chen, X., Easther, R. and Lim, E.A. (2008) Generation and Characterization of Large NG in Single Field Inflation. Journal of Cosmology and Astroparticle Physic, 2008.
http://dx.doi.org/10.1088/1475-7516/2008/04/010
[67] Bartolo, N., Matarrese, S. and Riotto, A. (2010) Non-Gaussianity and the Cosmic Microwave Background Anisotropies. Advance in Astronomy, 2010, Article ID: 157079.
[68] Vernizzi, F. and Wands, D. (2006) Non-Gaussianity in Two Field Inflation. Journal of Cosmology and Astroparticle Physics, 2006.
http://dx.doi.org/10.1088/1475-7516/2006/05/019
[69] Komatsu, E., et al. (2009) Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation. The Astrophysical Journal Supplement Series, 180, 330-376.
http://dx.doi.org/10.1088/0067-0049/180/2/330
[70] Komatsu, E., et al. (2011) Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation. The Astrophysical Journal Supplement Series, 192, Article ID: 18.
http://dx.doi.org/10.1088/0067-0049/192/2/18
[71] Hinshaw, G., Larson, D., Komatsu, E., et al. (2011) Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. The Astrophysical Journal Supplement Series, 208, Article ID: 19.
[72] Planck Collaboration: Ade, P.A.R., Aghanim, N., Armitage-Caplan, C., et al. (2013) Planck 2013 Results. XVI. Cosmological Parameters.
[73] Planck Collaboration: Ade, P.A.R., N. Aghanim, C., Armitage-Caplan, et al. (2013) Planck 2013 Results. XXIV. Constraints on Primordial Non-Gaussianity. Submitted to Astronomy & Astrophysics.
[74] Planck Collaboration: Ade, P.A.R., N. Aghanim, C., Armitage-Caplan, et al. (2013) Planck 2013 Results. XXII, Constraints on Inflation. Submitted to Astronomy & Astrophysics.
[75] Bars, I., Steinhardt, P.J. and Turok, N. (2013) Cyclic Cosmology and the Metastability of the Higgs.
[76] Brandenberger, R.H. (2011) Introduction to Early Universe Cosmology.
[77] Brandenberger, R.H. and Martin, J. (2012) Trans-Planckian Issues for Inflationary Cosmology.
[78] Borde, A., Guth, A. and Vilenkin, A. (2003) Inflationary Space-Time Are Not Past Complete. Physical Review Letters, 90, Article ID: 151301.
http://dx.doi.org/10.1103/PhysRevLett.90.151301
[79] Hawking, S.W. and Ellis, G.F.R. (1973) The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511524646
[80] Bojowald, M. (2001) Loop Quantum Cosmology IV: Discrete Time Evolution. Classical and Quantum Gravity, 18, 1071-1088.
http://dx.doi.org/10.1088/0264-9381/18/6/308
[81] Bojowald, M. (2001) Absence of a Singularity in Loop Quantum Cosmology. Physical Review Letters, 86, 5227-5230.
http://dx.doi.org/10.1103/PhysRevLett.86.5227
[82] Bojowald, M. (2001) Dynamical Initial Conditions in Quantum Cosmology. Physical Review Letters, 87, Article ID: 121301.
http://dx.doi.org/10.1103/PhysRevLett.87.121301
[83] Bojowald, M. (2002) Inflation from Quantum Geometry. Physical Review Letters, 89, Article ID: 261301.
http://dx.doi.org/10.1103/PhysRevLett.89.261301
[84] Bojowald, M. (2002) Quantization Ambiguities in Isotropic Quantum Geometry. Classical and Quantum Gravity, 19, 5113-5130.
http://dx.doi.org/10.1088/0264-9381/19/20/306
[85] Bojowald, M. (2003) Homogeneous Loop Quantum Cosmology. Classical and Quantum Gravity, 20, 2595-2615.
http://dx.doi.org/10.1088/0264-9381/20/13/310
[86] Ashtekar, A., Bojowald, M. and Lewandowski, J. (2003) Mathematical Structure of Loop Quantum Cosmology. Advances in Theoretical and Mathematical Physics, 7, 233-268.
[87] Ashtekar, A. and Singh, P. (2011) Loop Quantum Cosmology: A Status Report. Classical and Quantum Gravity, 28, Article ID: 213001.
[88] Agullo, I. (2013) Loop Quantum Cosmology.
[89] Ashtekar, A., Pawlowski, T., Singh, P. and Vandersloot, K. (2007) Loop Quantum Cosmology of k = 1 FRW Models. Physical Review D, 75, Article ID: 024035.
[90] Ashtekar, A. and Wilson-Ewing, E. (2009) Loop Quantum Cosmology of Bianchi Type II Model. Physical Review D, 80, Article ID: 123532.
http://dx.doi.org/10.1103/PhysRevD.80.123532
[91] Sen, A. (1982) Gravity as Spin System. Physical Review B, 119, 89-91.
http://dx.doi.org/10.1016/0370-2693(82)90250-7
[92] Barbero, F. (1995) Real Ashtekar Variables for Lorentzian Signature Space-Time. Physical Review D, 51, 5507-5510.
http://dx.doi.org/10.1103/PhysRevD.51.5507
[93] Rovelli, C. (1997) Loop Quantum Gravity. Living Reviews in Relativity, 1, 1-74.
[94] Rovelli, C. (2010) A New Look at Loop Quantum Gravity. Classical and Quantum Gravity, 28, Article ID: 114005.
http://dx.doi.org/10.1088/0264-9381/28/11/114005
[95] Rovelli, C. (2011) Loop Quantum Gravity: The First 25 Years. Classical and Quantum Gravity, 28, Article ID: 153002.
[96] Ashtekar, A. (1986) New Variables for Classical and Quantum Gravity. Physical Review Letters, 57, 2244-2247.
http://dx.doi.org/10.1103/PhysRevLett.57.2244
[97] Ashtekar, A. (1987) New Hamiltonian Formulation of General Relativity. Physical Review D, 36, 1587-1603.
http://dx.doi.org/10.1103/PhysRevD.36.1587
[98] Ashtekar, A., Kaminski, W. and Lewandowski, J. (2009) Quantum Field Theory on a Cosmological, Quantum Space-Time. Physical Review D, 79, Article ID: 064030.
http://dx.doi.org/10.1103/PhysRevD.79.064030
[99] Ashtekar, A. and Sloan, D. (2010) Loop Quantum Cosmology and Slow Roll Inflation. Physical Review B, 694, 108-112.
[100] Ashtekar, A. and Sloan, D. (2011) Probability of Inflation in Loop Quantum Cosmology. General Relativity and Gravitation, 43, 3619-3656.
http://dx.doi.org/10.1007/s10714-011-1246-y
[101] Agullo, I., Ashtekar, A. and Nelson, W. (2012) A Quantum Gravity Extension of the Inflationary Scenario. Physical Review Letters, 109, Article ID: 251301.
[102] Agullo, I., Ashtekar, A. and Nelson, W. (2013) Extension of the Quantum Theory of Cosmological Perturbations to the Planck Era. Physical Review D, 87, Article ID: 043507.
http://dx.doi.org/10.1103/PhysRevD.87.043507
[103] Ashtekar, A. (2013) Loop Quantum Gravity and the Planck Regime of Cosmology. 23 p. (Plenary talk at the Conference: Relativity and Gravitation: 100 Years after Einstein in Prague). arXiv:1303.4989
[104] Agullo, I., Ashtekar, A. and Nelson, W. (2013) The Pre-Inflationary Dynamics of Loop Quantum Cosmology: Confronting Quantum Gravity with Observations. Classical and Quantum Gravity, 30, Article ID: 085014.
[105] Peiris, H.V., et al. (2003) First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Inflation. The Astrophysical Journal Supplement Series, 148, 213.
http://dx.doi.org/10.1086/377228
[106] Mukhanov, V. (1988) Quantum Theory of Gauge Invariant Cosmological Perturbations. Soviet Physics, JETP, 67, 1297-1302.
[107] Mukhanov, V., Feldman, H. and Brandenberger, R. (1992) Theory of Cosmological Perturbations. Physics Report, 215, 203-233.
http://dx.doi.org/10.1016/0370-1573(92)90044-Z
[108] Sasaki, M. (1986) Large Scale Quantum Fluctuations in the Inflationary Universe. Progress of Theoretical Physics, 76, 1036-1046.
http://dx.doi.org/10.1143/PTP.76.1036
[109] McAllister, L., Silverstein, E. and Westphal, A. (2010) Gravity Waves and Linear Inflation from Axion Monodromy. Physical Review D, 82, Article ID: 046003.
http://dx.doi.org/10.1103/PhysRevD.82.046003
[110] Martin, J., Ringeval, C. and Vennin, V. (2013) Encyclopaedia Inflationaris. 368 p. arXiv:1303.3787
[111] Lyth, D.H., Ungarelli, C. and Wands, D. (2003) Primordial Density Perturbation in the Curvaton Scenario. Physical Review D, 67, Article ID: 023503.
http://dx.doi.org/10.1103/PhysRevD.67.023503
[112] Bartolo, N., Matarrese, S. and Riotto, A. (2004) Non-Gaussianity in the Curvaton Scenario. Physical Review D, 69, Article ID: 043503.
http://dx.doi.org/10.1103/PhysRevD.69.043503
[113] Zaldarriaga, M. (2004) Non-Gaussianities in Models with a Varying Inflaton Decay Rate. Physical Review D, 69, Article ID: 043508.
http://dx.doi.org/10.1103/PhysRevD.69.043508
[114] Creminelli, P. and Senatore, L. (2007) A Smooth Bouncing Cosmology with Scale Invariant Spectrum. Journal of Cosmology and Astroparticle Physics, 2007.
http://dx.doi.org/10.1088/1475-7516/2007/11/010
[115] Agullo, I. and Parker, L. (2011) Non-Gaussianity and the Stimulated Creation of Quanta in the Inflationary Universe. Physical Review D, 83, Article ID: 063526.
http://dx.doi.org/10.1103/PhysRevD.83.063526
[116] Cheung, C., Fizpatrick, A.L., Kaplan, J., Senatore, L. and Creminelli, P. (2008) The Effective Field Theory of Inflation. Journal of High Energy Physics, 2008.
http://dx.doi.org/10.1088/1126-6708/2008/03/014
[117] Agullo, I. and Shandera, S. (2012) Large Non-Gaussian Halo Bias from Single Field Inflation. Journal of Cosmology and Astroparticle Physics, 2012.
http://dx.doi.org/10.1088/1475-7516/2012/09/007
[118] Bennett, C., Larson, D., et al. (2013) Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results. The Astrophysical Journal Supplement Series, 208, 20.
[119] Treu, T., Marshall, P.J., et al. (2013) Dark Energy with Gravitational Lens Time Delays. 9 p. arXiv:1306.1272v1
[120] Meerburg, P.D., van der Schaar, J.P. and Corasanti, P.R. (2009) Signatures of Initial State Modification on Bispectrum Statics. Journal of Cosmology and Astroparticle Physics, 5.
http://dx.doi.org/10.1088/1475-7516/2009/05/018
[121] Sugimura, K. and Komatsu, E. (2013) Bispectrum from Open Inflation. Journal of Cosmology and Astroparticle Physics, 11.
http://dx.doi.org/10.1088/1475-7516/2013/11/065
[122] Silverstein, E. and Westphal, A. (2008) Monodromy in the CMB: Gravity Waves and String Inflation. Physical Review D, 78, Article ID: 106003.
http://dx.doi.org/10.1103/PhysRevD.78.106003
[123] Linde, A. (2014) Inflationary Cosmology after Planck 2013. 84 p. (Based on Lectures at the Les Houches School “Post-Planck Cosmology”, 2013). arXiv:1402.0526v2
[124] Martin, J., Ringeval, C. and Vennin, V. (2013) The Best Inflationary Models after Plank. 63 p. arXiv:1312.3529
[125] Kiefer, C., Polarski, D. and Starobinsky, A.A. (1998) Quantum to Classical Transition for Fluctuations in the Early Universe. International Journal of Modern Physics D, 7, 455-462.
http://dx.doi.org/10.1142/S0218271898000292
[126] Kiefer, C. and Polarski, D. (2009) Why Do Cosmological Perturbations Look Classical to Us? Advanced Science Letters, 2, 164-173.
http://dx.doi.org/10.1166/asl.2009.1023
[127] Sudarsky, D. (2011) Shortcomings in the Understanding of Why Cosmological Perturbations Look Classical. International Journal of Modern Physics D, 20, 509-552.
http://dx.doi.org/10.1142/S0218271811018937
[128] Sliwa, K. (2013) Atlas Overview and Main Results. CERN Document Server: ATL-PHYS-PROC-2013-130.
arXiv:1305.4551v1
[129] Penrose, R. (2011) Cycle of Time. Vintage Books, London.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.