[1]
|
Rosenberg, G.A. (1999) Ischemic Brain Edema. Progress in Cardiovascular Diseases, 42, 209-216.
http://dx.doi.org/10.1016/S0033-0620(99)70003-4
|
[2]
|
Rockwood, K., et al. (2007) Toward a Revision of Criteria for the Dementias. Alzheimer’s & Dementia, 3, 428-440.
http://dx.doi.org/10.1016/j.jalz.2007.07.014
|
[3]
|
Hasegawa, H., et al. (1994) Molecular Cloning of a Mercuri-al-Insensitive Water Channel Expressed in Selected Water-Transporting Tissues. Journal of Biological Chemistry, 269, 5497-500.
|
[4]
|
Jung, J.S., et al. (1994) Molecular Characterization of an Aquaporin cDNA from Brain: Candidate Osmoreceptor and Regulator of Water Balance. Proceedings of the National Academy of the United States of America, 91, 13052-13056.
http://dx.doi.org/10.1073/pnas.91.26.13052
|
[5]
|
Terzaghi, K. (1923) Die berechnung der durchlassigkeitzifer des tones aus dem verlauf der hydrodynamischen spannungserscheinungen, Mathematish-naturwissenschaftliche, Klasse. Akademie der Wissenschaften, Vienna, 125-138.
|
[6]
|
Biot, M.A. (1941) General Theory of Three-Dimensional Con-solidation. Journal of Applied Physics, 12, 155-164.
http://dx.doi.org/10.1063/1.1712886
|
[7]
|
Mendes, M.A., Murad, M.A. and Pereira, F. (2012) A New Computational Strategy for Solving Two-Phase Flow in Strongly Heterogeneous Poroelastic Media of Evolving Scales. International Journal for Numerical and Analytical Methods in Geomechanics, 36, 1683-1716. http://dx.doi.org/10.1002/nag.1067
|
[8]
|
Carcione, J.M., Morency, C. and Santos, J.E. (2010) Computational Poroelas-ticity—A Review. Geophysics, 75, A229- A243.
|
[9]
|
Pena, A., Bolton, M.D. and Pickard, J.D. (1998) Cellular Poroe-lasticity: A Theoretical Model for Soft Tissue Mechanics. http://www-civ.eng.cam.ac.uk/geotech_new/people/bolton/mdb_pub/76_poromechanics98_475_480.PDF
|
[10]
|
Stokes, I.A., et al. (2010) Limitation of Finite Element Analysis of Poroelastic Behavior of Biological Tissues Undergoing Rapid Loading. Annals of Biomedical Engineering, 38, 1780-1788.
http://dx.doi.org/10.1007/s10439-010-9938-0
|
[11]
|
Wang, X. and Hong, W. (2012) A Visco-Poroelastic Theory for Polymeric Gels. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science.
|
[12]
|
Polzer, S., et al. (2012) Impact of Poroelasticity of Intraluminal Thrombus on Wall Stress of Abdominal Aortic Aneurysms. Bio-Medical Engineering OnLine, 11, 62. http://dx.doi.org/10.1186/1475-925X-11-62
|
[13]
|
Nia, H.T., et al. (2011) Poroe-lasticity of Cartilage at the Nanoscale. Biophysical Journal, 101, 2304-2313.
http://dx.doi.org/10.1016/j.bpj.2011.09.011
|
[14]
|
Wan, X.C., Steudle, E. and Hartung, W. (2004) Gating of Water Channels (Aquaporins) in Cortical Cells of Young Corn Roots by Mechanical Stimuli (pressure pulses): Effects of ABA and of HgCl2. Journal of Experimental Botany, 55, 411-422. http://dx.doi.org/10.1093/jxb/erh051
|
[15]
|
Kimelberg, H.K. (2004) Water Homeostasis in the Brain: Basic Concepts. Neuroscience, 129, 851-860.
http://dx.doi.org/10.1016/j.neuroscience.2004.07.033
|
[16]
|
Tully, B. and Ventikos, Y. (2011) Cerebral Water Transport Using Multiple-Network Poroelastic Theory: Application to Normal Pressure Hydrocephalus. Journal of Fluid Mechanics, 667, 188-215.
http://dx.doi.org/10.1017/S0022112010004428
|
[17]
|
Tully, B. and Ventikos, Y. (2009) Coupling Poroelasticity and CFD for Cerebrospinal Fluid Hydrodynamics. IEEE Transactions on Biomedical Engineering, 56, 1644-1651. http://dx.doi.org/10.1109/TBME.2009.2016427
|
[18]
|
Vandoormaal, J.P. and Raithby, G.D. (1984) Enhancements of the Simple Method for Predicting Incompressible Fluid- Flows. Numerical Heat Transfer, 7, 147-163.
|
[19]
|
Badaut, J., Brunet, J.F. and Regli, L. (2007) Aquawporins in the Brain: From Aqueduct to “Multi-Duct”. Metabolic Brain Disease, 22, 251-263. http://dx.doi.org/10.1007/s11011-007-9057-2
|