Share This Article:

Effect of Tubular Chiralities and Diameters of Single Carbon Nanotubes on Gas Sensing Behavior: A DFT Analysis

Abstract Full-Text HTML Download Download as PDF (Size:1724KB) PP. 66-74
DOI: 10.4236/jsemat.2014.42010    5,004 Downloads   6,372 Views   Citations


Using density functional theory, the adsorption of CO, CO2, NO and CO2 gas molecules on different chiralities and diameters of single carbon nanotubes is investigated in terms of energetic, electronic properties and surface reactivity. We found that the adsorption of CO and CO2 gas molecules is dependent on the chiralities and diameters of CNTs and it is vice versa for NO and NO2 gas molecules. Also, the electronic character of CNTs is not affected by the adsorption of CO and CO2 gas molecules while it is strongly affected by NO and NO2 gas molecules. In addition, it is found that the dipole moments of zig-zag CNTs are always higher than the arm-chair CNTs. Therefore, we conclude that the zig-zag carbon nanotubes are more preferred as gas sensors than the arm-chair carbon nanotubes, especially for detecting NO and NO2 gas molecules.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

EL-Barbary, A. , Eid, K. , Kamel, M. , Osman, H. and G. H. Ismail, G. (2014) Effect of Tubular Chiralities and Diameters of Single Carbon Nanotubes on Gas Sensing Behavior: A DFT Analysis. Journal of Surface Engineered Materials and Advanced Technology, 4, 66-74. doi: 10.4236/jsemat.2014.42010.


[1] Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S. and Cho, K. (2000) Nanotube Molecular Wires as Chemical Sensors. Science, 287, 622.
[2] Snow, E.S., Perkins, F.K., Houser, E.J., Badescu, S.C. and Reinecke, T.L. (2005) Chemical Detection with a Single-Walled Carbon Nanotube Capacitor. Science, 307, 1942-1945.
[3] Baei, M.T., Soltani, A.R., Moradi, A.V. and Lemeski, E.T. (2011) Adsorption Properties of NO on (6, 0), (7, 0), and (8, 0) Zigzag Single-Walled Boron Nitride Nanotubes: A Computational Study. Computational and Theoretical Chemistry, 970, 30-35.
[4] Breza, M. (2006) Model Studies of SOCl2 Adsorption on Carbon Nanotubes. Journal of Molecular Structure: THEOCHEM, 767, 159-163.
[5] Zhao, J., Buldum, A., Han, J. and Lu, J.P. (2002) Gas Molecule Adsorption in Carbon Nanotubes and Nanotube Bundles. Nanotechnology, 13, 195-200.
[6] Ricca, A. and Bauschlicher Jr., C.W. (2006) The Adsorption of NO on (9, 0) and (10, 0) Carbon Nanotubes. Chemical Physics, 323, 511-518.
[7] Abbas Rafati, A., Majid Hashemianzadeh, S. and Bolboli Nojini, Z. (2008) Electronic Properties of Adsorption Nitrogen Monoxide on Inside and Outside of the Armchair Single Wall Carbon Nanotubes: A Density Functional Theory Calculations. The Journal of Physical Chemistry C, 112, 3597-3604.
[8] Azizi, K., Majid Hashemianzadeh, S. and Bahramifar, Sh. (2011) Density Functional Theory Study of Carbon Monoxide Adsorption on the Inside and Outside of the Armchair Single-Walled Carbon Nanotubes. Current Applied Physics, 11, 776-782.
[9] Ricca, A., Bauschlicher Jr., C.W. (2006) The Physisorption of CH4 on Graphite and on a (9, 0) Carbon Nanotube. Chemical Physics, 324, 455-458.
[10] Santucci, S., Picozzi, S., Di Gregorio, F., Lozzi, L., Cantalini, C., Valentini, L., Kenny, J.M. and Delley, B. (2003) NO2 and CO Gas Adsorption on Carbon Nanotubes: Experiment and Theory. The Journal of Chemical Physics, 119, 10904-10910.
[11] Zanolli, Z. and Charlier, J.C. (2009) Defective Carbon Nanotubes for Single-Molecule Sensing. Physical Review B, 80, 155447.
[12] Tang, S. and Cao, Z. (2009) Defect-Induced Chemisorption of Nitrogen Oxides on (10, 0) Single-Walled Carbon Nanotubes: Insights from Density Functional Calculations. The Journal of Chemical Physics, 131, 114706.
[13] García-Lastra, J.M., Mowbray, D.J., Thygesen, K.S., Rubio, A. and Jacobsen, K.W. (2010) Modeling Nanoscale Gas Sensors under Realistic Conditions: Computational Screening of Metal-Doped Carbon Nanotubes. Physical Review B, 81, 245429.
[14] Denis, P.A. (2008) Methane Adsorption Inside and Outside Pristine and N-Doped Single Wall Carbon Nanotubes. Chemical Physics, 353, 79-86.
[15] Yeung, C.S., Liu, L.V. and Wang, Y.A. (2008) Adsorption of Small Gas Molecules onto Pt-Doped Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry C, 112, 7401-7411.
[16] Zhao, J.X. and Ding, Y.H. (2008) Theoretical Study of the Interactions of Carbon Monoxide with Rh-Decorated (8, 0) Single-Walled Carbon Nanotubes, Materials Chemistry and Physics, 110, 411-416.
[17] An, W. and Turner, C.H. (2009) Electronic Structure Calculations of Gas Adsorption on Boron Doped Carbon Nanotubes Sensitized with Tungsten. Chemical Physics, 482, 274-280.
[18] Sayago, I., Santos, H., Horrillo, M.C., Aleixandre, M., Fernández, M.J., Terrado, E., Tacchini, I., Aroz, R., Maser, W.K., Benito, A.M., Martínez, M.T., Gutiérrez, J. and Munoz, E. (2008) Carbon Nanotube Networks as Gas Sensors for NO2 Detection. Talanta, 77, 758-764.
[19] Li, X.M., Tian, W.Q., Dong, Q., Huang, X.R., Sun, C.C. and Jiang, L. (2011) Substitutional Doping of BN Nanotube by Transition Metal: A Density Functional Theory Simulation. Computational and Theoretical Chemistry, 964, 199-206.
[20] Chen, H.L., Wu, S.Y., Chen, H.T., Chang, J.G., Ju, S.P., Tsai, C. and Hsu, L.C. (2010) Theoretical Study on Adsorption and Dissociation of NO2 Molecule on Fe(1 1 1) Surface. Langmuir, 26, 7157-7164.
[21] Wickham, D.T., Banse, B.A. and Koel, B.E. (1991) Adsorption of Nitrogen Dioxide and Nitric Oxide on Pd(1 1 1). Surface Science, 243, 83-95.
[22] Jirsak, T., Kuhn, M. and Rodriguez, J.A. (2000) Chemistry of NO2 on Mo(1 1 0): Decomposition Reactions and Formation of MoO2. Surface Science, 457, 254-266.
[23] Huang, W., Jiang, Z., Jiao, J., Tan, D., Zhai, R. and Bao, X. (2002) Decomposition of NO on Pt(1 1 0): Formation of a New Oxygen Adsorption State. Surface Science, 506, 287-292.
[24] Hellman, A., Panas, I. and Grönbeck, H. (2008) NO2 Dissociation on Ag(1 1 1) Revisited by Theory. Journal of Chemical Physics, 128, 104704-104709.
[25] Yen, M.Y. and Ho, J.J. (2010) Density-Functional Study for the NOx (x = 1, 2) Dissociation Mechanism on the Cu(1 1 1) Surface. Chemical Physics, 373, 300-306.
[26] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Lamham, M.A., Peng, C.Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P.M.W., Johnson, B.G., Chen, W., Wong, M.W., Andres, J.L., Head-Gordon, M., Replogle, E.S. and Pople, J.A. (2004) Gaussian. Wallingford CT, Inc., Wallingford.
[27] EL-Barbary, A.A., Lebda, H.I. and Kamel, M.A. (2009) The High Conductivity of Defect Fullerene C40 Cage. Computational Materials Science, 46, 128.
[28] El-Barbary, A.A., Eid, K.M., Kamel, M.A. and Hassan, M.M. (2013) Band Gap Engineering in Short Heteronanotube Segments via Monovacancy Defects. Computational Materials Science, 69, 87-94.
[29] EL-Barbary, A.A., Ismail, G.H. and Babeer, A.M. (2013) Effect of Monovacancy Defects on Adsorbing of CO, CO2, NO and NO2 on Carbon Nanotubes: First Principle Calculations. Journal of Surface Engineered Materials and Advanced Technology, 3, 287-294.
[30] Nalwa, H. (2002) Nanostructured Materials and Nanotechnology. Academic Press, San Diego.
[31] Chang, H., Lee, J.D., Lee, S.M. and Lee, Y.H. (2001) Adsorption of NH3 and NO2 Molecules on Carbon Nanotubes. Applied Physics Letters, 79, 3863.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.