Share This Article:

FDG and Amyloid PET in Cognitively Normal Individuals at Risk for Late-Onset Alzheimer’s Disease

Full-Text HTML Download Download as PDF (Size:1861KB) PP. 15-26
DOI: 10.4236/ami.2014.42003    4,291 Downloads   6,246 Views   Citations

ABSTRACT

Having a parent affected by late-onset Alzheimer’s disease (AD) is a major risk factor for cognitively normal (NL) individuals. This study explores the potential of PET with 18F-FDG and the amyloid-β (Aβ) tracer 11C-Pittsburgh Compound B (PiB) for detection of individual risk in NL adults with AD-parents. Methods: FDG- and PiB-PET was performed in 119 young to late-middle aged NL individuals including 80 NL with positive family history of AD (FH+) and 39 NL with negative family history of any dementia (FH-). The FH+ group included 50 subjects with maternal (FHm) and 30 with paternal family history (FHp). Individual FDG and PiB scans were Z scored on a voxel-wise basis relative to modality-specific reference databases using automated procedures and rated as positive or negative (+/-) for AD-typical abnormalities using predefined criteria. To determine the effect of age, the cohort was separated into younger (49 ± 9 y) and older (68 ± 5 y) groups relative to the median age (60 y). Results: Among individuals of age >60 y, as compared to controls, NL FH+ showed a higher frequency of FDG+ scans vs. FH- (53% vs. 6% p < 0.003), and a trend for PiB+ scans (27% vs. 11%; p = 0.19). This effect was observed for both FHm and FHp groups. Among individuals of age ≤60 y, NL FHm showed a higher frequency of FDG+ scans (29%) compared to FH- (5%, p = 0.04) and a trend compared to FHp (11%) (p = 0.07), while the distribution of PiB+ scans was not different between groups. In both age cohorts, FDG+ scans were more frequent than PiB+ scans among NL FH+, especially FHm (p < 0.03). FDG-PET was a significant predictor of FH+ status. Classification according to PiB status was significantly less successful. Conclusions: Automated analysis of FDG- and PiB-PET demonstrates higher rates of abnormalities in at-risk FH+ vs FH-subjects, indicating potentially ongoing early AD-pathology in this population. The frequency of metabolic abnormalities was higher than that of Aβ pathology in the younger cohort, suggesting that neuronal dysfunction may precede major aggregated Aβ burden in young NL FH+. Longitudinal follow-up is required to determine if the observed abnormalities predict future AD.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Murray, J. , H. Tsui, W. , Li, Y. , McHugh, P. , Williams, S. , Cummings, M. , Pirraglia, E. , Solnes, L. , Osorio, R. , Glodzik, L. , Vallabhajosula, S. , Drzezga, A. , Minoshima, S. , J. de Leon, M. and Mosconi, L. (2014) FDG and Amyloid PET in Cognitively Normal Individuals at Risk for Late-Onset Alzheimer’s Disease. Advances in Molecular Imaging, 4, 15-26. doi: 10.4236/ami.2014.42003.

References

[1] Herholz, K., Salmon, E., Perani, D., Baron, J.C., Holthoff, V., Frolich, L., Schonknecht, P., Ito, K., Mielke, R., Kalbe, E., Zundorf, G., Delbeuck, X., Pelati, O., Anchisi, D., Fazio, F., Kerrouche, N., Desgranges, B., Eustache, F., Beuthien-Baumann, B., Menzel, C., Schroder, J., Kato, T., Arahata, Y., Henze, M. and Heiss, W.D. (2002) Discrimination between Alzheimer Dementia and Controls by Automated Analysis of Multicenter FDG PET. Neuroimage, 17, 302-316. http://dx.doi.org/10.1006/nimg.2002.1208
[2] Mosconi, L. (2005) Brain Glucose Metabolism in the Early and Specific Diagnosis of Alzheimer’s Disease. FDG-PET Studies in MCI and AD. European Journal of Nuclear Medicine and Molecular Imaging, 32, 486-510.
http://dx.doi.org/10.1007/s00259-005-1762-7
[3] Mosconi, L., Tsui, W.H., Herholz, K., Pupi, A., Drzezga, A., Lucignani, G., Reiman, E.M., Holthoff, V., Kalbe, E., Sorbi, S., Diehl-Schmid, J., Perneczky, R., Clerici, F., Caselli, R., Beuthien-Baumann, B., Kurz, A., Minoshima, S. and de Leon, M.J. (2008) Multicenter Standardized 18F-FDG PET Diagnosis of Mild Cognitive Impairment, Alzheimer’s Disease, and Other Dementias. Journal of Nuclear Medicine, 49, 390-398.
http://dx.doi.org/10.2967/jnumed.107.045385
[4] Silverman, D.H., Small, G.W., Chang, C.Y., Lu, C.S., Kung De Aburto, M.A., Chen, W., Czernin, J., Rapoport, S.I., Pietrini, P., Alexander, G.E., Schapiro, M.B., Jagust, W.J., Hoffman, J.M., Welsh-Bohmer, K.A., Alavi, A., Clark, C.M., Salmon, E., de Leon, M.J., Mielke, R., Cummings, J.L., Kowell, A.P., Gambhir, S.S., Hoh, C.K. and Phelps, M.E. (2001) Positron Emission Tomography in Evaluation of Dementia: Regional Brain Metabolism and Long-Term Outcome. JAMA, 286, 2120-2127.
http://dx.doi.org/10.1001/jama.286.17.2120
[5] Klunk, W.E., Engler, H., Nordberg, A., Wang, Y., Blomqvist, G., Holt, D.P., Bergstrom, M., Savitcheva, I., Huang, G.F., Estrada, S., Ausen, B., Debnath, M.L., Barletta, J., Price, J.C., Sandell, J., Lopresti, B.J., Wall, A., Koivisto, P., Antoni, G., Mathis, C.A. and Langstrom, B. (2004) Imaging Brain Amyloid in Alzheimer’s Disease with Pittsburgh Compound-B. Annals of Neurology, 55, 306-319.
http://dx.doi.org/10.1002/ana.20009
[6] Ng, S., Villemagne, V.L., Berlangieri, S., Lee, S.T., Cherk, M., Gong, S.J., Ackermann, U., Saunder, T., Tochon-Danguy, H., Jones, G., Smith, C., O’Keefe, G., Masters, C.L. and Rowe, C.C. (2007) Visual Assessment versus Quantitative Assessment of 11C-PIB PET and 18F-FDG PET for Detection of Alzheimer’s Disease. Journal of Nuclear Medicine, 48, 547-552.
http://dx.doi.org/10.2967/jnumed.106.037762
[7] Rowe, C.C., Ng, S., Ackermann, U., Gong, S.J., Pike, K., Savage, G., Cowie, T.F., Dickinson, K.L., Maruff, P., Darby, D., Smith, C., Woodward, M., Merory, J., Tochon-Danguy, H., O’Keefe, G., Klunk, W.E., Mathis, C.A., Price, J.C., Masters, C.L. and Villemagne, V.L. (2007) Imaging Beta-Amyloid Burden in Aging and Dementia. Neurology, 68, 1718-1725.
http://dx.doi.org/10.1212/01.wnl.0000261919.22630.ea
[8] Johnson, K.A., Minoshima, S., Bohnen, N.I., Donohoe, K.J., Foster, N.L., Herscovitch, P., Karlawish, J.H., Rowe, C.C., Carrillo, M.C., Hartley, D.M., Hedrick, S., Pappas, V. and Thies, W.H. (2013) Appropriate Use Criteria for Amyloid PET: A Report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer’s Association. Journal of Nuclear Medicine, 54, 476-490.
http://dx.doi.org/10.2967/jnumed.113.120618
[9] Jack Jr., C.R., Knopman, D.S., Jagust, W.J., Shaw, L.M., Aisen, P.S., Weiner, M.W., Petersen, R.C. and Trojanowski, J.Q. (2010) Hypothetical Model of Dynamic Biomarkers of the Alzheimer’s Pathological Cascade. The Lancet Neurology, 9, 119-128. http://dx.doi.org/10.1016/S1474-4422(09)70299-6
[10] Drzezga, A., Grimmer, T., Riemenschneider, M., Lautenschlager, N., Siebner, H., Alexopoulus, P., Minoshima, S., Schwaiger, M. and Kurz, A. (2005) Prediction of Individual Clinical Outcome in MCI by Means of Genetic Assessment and (18)F-FDG PET. Journal of Nuclear Medicine, 46, 1625-1632.
[11] Minoshima, S., Giordani, B., Berent, S., Frey, K.A., Foster, N.L. and Kuhl, D.E. (1997) Metabolic Reduction in the Posterior Cingulate Cortex in very Early Alzheimer’s Disease. Annals of Neurology, 42, 85-94.
http://dx.doi.org/10.1002/ana.410420114
[12] Mosconi, L., De Santi, S., Li, J., Tsui, W.H., Li, Y., Boppana, M., Laska, E., Rusinek, H. and de Leon, M.J. (2008) Hippocampal Hypometabolism Predicts Cognitive Decline from Normal Aging. Neurobiology of Aging, 29, 676-692.
http://dx.doi.org/10.1016/j.neurobiolaging.2006.12.008
[13] Haass, C. and Selkoe, D.J. (2007) Soluble Protein Oligomers in Neurodegeneration: Lessons from the Alzheimer’s Amyloid Beta-Peptide. Nature Reviews Molecular Cell Biology, 8, 101-112. http://dx.doi.org/10.1038/nrm2101
[14] Aizenstein, H.J., Nebes, R.D., Saxton, J.A., Price, J.C., Mathis, C.A., Tsopelas, N.D., Ziolko, S.K., James, J.A., Snitz, B.E., Houck, P.R., Bi, W., Cohen, A.D., Lopresti, B.J., DeKosky, S.T., Halligan, E.M. and Klunk, W.E. (2008) Frequent Amyloid Deposition without Significant Cognitive Impairment among the Elderly. JAMA Neurology, 65, 1509-1517. http://dx.doi.org/10.1001/archneur.65.11.1509
[15] Mintun, M.A., Larossa, G.N., Sheline, Y.I., Dence, C.S., Lee, S.Y., Mach, R.H., Klunk, W.E., Mathis, C.A., DeKosky, S.T. and Morris, J.C. (2006) [11C]PIB in a Nondemented Population: Potential Antecedent Marker of Alzheimer Disease. Neurology, 67, 446-452.
http://dx.doi.org/10.1212/01.wnl.0000228230.26044.a4
[16] Farrer, L.A., O’Sullivan, D.M., Cupples, L.A., Growdon, J.H. and Myers, R.H. (1989) Assessment of Genetic Risk for Alzheimer’s Disease among First-Degree Relatives. Annals of Neurology, 25, 485-493.
http://dx.doi.org/10.1002/ana.410250511
[17] Bertram, L., Lill, C.M. and Tanzi, R.E. (2010) The Genetics of Alzheimer Disease: Back to the Future. Neuron, 68, 270-281. http://dx.doi.org/10.1016/j.neuron.2010.10.013
[18] Mosconi, L., Rinne, J.O., Tsui, W., Murray, J., Li, Y., Glodzik, L., McHugh, P., Williams, S., Cummings, M., Pirraglia, E., Goldsmith, S.J., Vallabhajosula, S., Scheinin, N., Viljanen, T., Nagren, K. and de Leon, M.J. (2013) Amyloid and Metabolic PET Imaging of Cognitively Normal Adults with Alzheimer’s Parents. Neurobiology of Aging, 34, 22-34.
[19] Mosconi, L., Rinne, J.O., Tsui, W.H., Berti, V., Li, Y., Wang, H., Murray, J., Scheinin, N., Nagren, K., Williams, S., Glodzik, L., De Santi, S., Vallabhajosula, S. and de Leon, M.J. (2010) Increased Fibrillar Amyloid-Beta Burden in Normal Individuals with a Family History of Late-Onset Alzheimer’s. Proceedings of the National Academy of Sciences of the United States of America, 107, 5949-5954.
http://dx.doi.org/10.1073/pnas.0914141107
[20] Mosconi, L., Brys, M., Switalski, R., Mistur, R., Glodzik, L., Pirraglia, E., Tsui, W., De Santi, S. and de Leon, M.J. (2007) Maternal Family History of Alzheimer’s Disease Predisposes to Reduced Brain Glucose Metabolism. Proceedings of the National Academy of Sciences of the United States of America, 104, 19067-19072.
http://dx.doi.org/10.1073/pnas.0705036104
[21] Mosconi, L., Mistur, R., Switalski, R., Brys, M., Glodzik, L., Rich, K., Pirraglia, E., Tsui, W., De Santi, S. and de Leon, M.J. (2009) Declining Brain Glucose Metabolism in Normal Individuals with a Maternal History of Alzheimer Disease. Neurology, 72, 513-520.
http://dx.doi.org/10.1212/01.wnl.0000333247.51383.43
[22] Mosconi, L., Berti, V., Swerdlow, R.H., Pupi, A., Duara, R. and de Leon, M. (2010) Maternal Transmission of Alzheimer’s Disease: Prodromal Metabolic Phenotype and the Search for Genes. Human Genomics, 4, 170-193.
http://dx.doi.org/10.1186/1479-7364-4-3-170
[23] Joshi, A., Koeppe, R.A. and Fessler, J.A. (2009) Reducing between Scanner Differences in Multi-Center PET Studies. NeuroImage, 46, 154-159. http://dx.doi.org/10.1016/j.neuroimage.2009.01.057
[24] Li, Y., Rinne, J.O., Mosconi, L., Pirraglia, E., Rusinek, H., DeSanti, S., Kemppainen, N., Nagren, K., Kim, B.C., Tsui, W. and de Leon, M.J. (2008) Regional Analysis of FDG and PIB-PET Images in Normal Aging, Mild Cognitive Impairment, and Alzheimer’s Disease. European Journal of Nuclear Medicine and Molecular Imaging, 35, 2169-2181.
http://dx.doi.org/10.1007/s00259-008-0833-y
[25] Ishii, K., Willoch, F., Minoshima, S., Drzezga, A., Ficaro, E.P., Cross, D.J., Kuhl, D.E. and Schwaiger, M. (2001) Statistical Brain Mapping of 18F-FDG PET in Alzheimer’s Disease: Validation of Anatomic Standardization for Atrophied Brains. Journal of Nuclear Medicine, 42, 548-557.
[26] Minoshima, S., Frey, K.A., Koeppe, R.A., Foster, N.L. and Kuhl, D.E. (1995) A Diagnostic Approach in Alzheimer’s Disease Using Three-Dimensional Stereotactic Surface Projections of Fluorine-18-FDG PET. Journal of Nuclear Medicine, 36, 1238-1248.
[27] Minoshima, S., Frey, K.A., Foster, N.L. and Kuhl, D.E. (1995) Preserved Pontine Glucose Metabolism in Alzheimer Disease: A Reference Region for Functional Brain Image (PET) Analysis. Journal of Computer Assisted Tomography, 19, 541-547. http://dx.doi.org/10.1097/00004728-199507000-00006
[28] Price, J.C., Klunk, W.E., Lopresti, B.J., Lu, X., Hoge, J.A., Ziolko, S.K., Holt, D.P., Meltzer, C.C., DeKosky, S.T. and Mathis, C.A. (2005) Kinetic Modeling of Amyloid Binding in Humans Using PET Imaging and Pittsburgh Compound-B. Journal of Cerebral Blood Flow & Metabolism, 25, 1528-1547. http://dx.doi.org/10.1038/sj.jcbfm.9600146
[29] Silverman, D.H., Truong, C.T., Kim, S.K., Chang, C.Y., Chen, W., Kowell, A.P., Cummings, J.L., Czernin, J., Small, G.W. and Phelps, M.E. (2003) Prognostic Value of Regional Cerebral Metabolism in Patients Undergoing Dementia Evaluation: Comparison to a Quantifying Parameter of Subsequent Cognitive Performance and to Prognostic Assessment without PET. Molecular Genetics and Metabolism, 80, 350-355.
http://dx.doi.org/10.1016/S1096-7192(03)00139-2
[30] Mosconi, L., Tsui, W.H., Pupi, A., De Santi, S., Drzezga, A., Minoshima, S. and de Leon, M.J. (2007) 18F-FDG PET Database of Longitudinally Confirmed Healthy Elderly Individuals Improves Detection of Mild Cognitive Impairment and Alzheimer’s Disease. Journal of Nuclear Medicine, 48, 1129-1134.
http://dx.doi.org/10.2967/jnumed.107.040675
[31] Braak, H. and Braak, E. (1991) Neuropathological Stageing of Alzheimer-Related Changes. Acta Neuropathologica, 82, 239-259. http://dx.doi.org/10.1007/BF00308809
[32] Pratico, D., Uryu, K., Leight, S., Trojanoswki, J.Q. and Lee, V.M. (2001) Increased Lipid Peroxidation Precedes Amyloid Plaque Formation in an Animal Model of Alzheimer Amyloidosis. Journal of Neuroscience, 21, 4183-4187.
[33] Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M.H., Patlak, C.S., Pettigrew, K.D., Sakurada, O. and Shinohara, M. (1977) The [14C]Deoxyglucose Method for the Measurement of Local Cerebral Glucose Utilization: Theory, Procedure, and Normal Values in the Conscious and Anesthetized Albino Rat. Journal of Neurochemistry, 28, 897-916.
http://dx.doi.org/10.1111/j.1471-4159.1977.tb10649.x
[34] Drzezga, A., Becker, J.A., Van Dijk, K.R., Sreenivasan, A., Talukdar, T., Sullivan, C., Schultz, A.P., Sepulcre, J., Putcha, D., Greve, D., Johnson, K.A. and Sperling, R.A. (2011) Neuronal Dysfunction and Disconnection of Cortical Hubs in Non-Demented Subjects with Elevated Amyloid Burden. Brain, 134, 1635-1646.
http://dx.doi.org/10.1093/brain/awr066
[35] Meguro, K., Blaizot, X., Kondoh, Y., Le Mestric, C., Baron, J.C. and Chavoix, C. (1999) Neocortical and Hippocampal Glucose Hypometabolism Following Neurotoxic Lesions of the Entorhinal and Perirhinal Cortices in the Non-Human Primate as Shown by PET. Implications for Alzheimer’s Disease. Brain, 122, 1519-1531.
http://dx.doi.org/10.1093/brain/122.8.1519
[36] Davies, L., Wolska, B., Hilbich, C., Multhaup, G., Martins, R., Simms, G., Beyreuther, K. and Masters, C.L. (1988) A4 Amyloid Protein Deposition and the Diagnosis of Alzheimer’s Disease: Prevalence in Aged Brains Determined by Immunocytochemistry Compared with Conventional Neuropathologic Techniques. Neurology, 38, 1688-1693.
http://dx.doi.org/10.1212/WNL.38.11.1688
[37] Reiman, E.M., Chen, K., Alexander, G.E., Caselli, R.J., Bandy, D., Osborne, D., Saunders, A.M. and Hardy, J. (2004) Functional Brain Abnormalities in Young Adults at Genetic Risk for Late-Onset Alzheimer’s Dementia. Proceedings of the National Academy of Sciences of the United States of America, 101, 284-289.
http://dx.doi.org/10.1073/pnas.2635903100
[38] Grimmer, T., Wutz, C., Drzezga, A., Forster, S., Forstl, H., Ortner, M., Perneczky, R. and Kurz, A. (2012) The Usefulness of Amyloid Imaging in Predicting the Clinical Outcome after Two Years in Subjects with Mild Cognitive Impairment. Current Alzheimer Research, 10, 82-85.
[39] Petersen, R.C., Stevens, J.C., Ganguli, M., Tangalos, E.G., Cummings, J.L. and DeKosky, S.T. (2001) Practice Parameter: Early Detection of Dementia: Mild Cognitive Impairment (an Evidence-Based Review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology, 56, 1133-1142.
http://dx.doi.org/10.1212/WNL.56.9.1133
[40] Petrou, M., Bohnen, N.I., Muller, M.L., Koeppe, R.A., Albin, R.L. and Frey, K.A. (2012) Aβ-Amyloid Deposition in Patients with Parkinson Disease at Risk for Development of Dementia. Neurology, 79, 1161-1167.
http://dx.doi.org/10.1212/WNL.0b013e3182698d4a

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.