Share This Article:

Fabrication of self-assembled monolayer using carbon nanotubes conjugated 1-aminoundecanethiol on gold substrates

Full-Text HTML Download Download as PDF (Size:922KB) PP. 208-217
DOI: 10.4236/ns.2011.33027    7,383 Downloads   12,913 Views   Citations


The carbon nanotube (fundamentally Single- walled carbon nanotube, SWCNT) based on 1-Amino-undecanethiol (AUT) were extremely controlled (nano-level) organizing a vertical self-assembled monolayer (SAM) on gold single crystal surfaces. The produced nano-surfaces were explored particularly by Fourier Transform Infra-red Spectroscopy (FT-IR), Cyclic Voltammetry (CV), Raman spectroscopy, Electrochemi- cal quartz crystal microbalance (EQCM), and Atomic force microscopy (AFM) techniques. The SWCNTs were initially cut (chemically) into short pipes and thiol-derivatized at the open ends. The vertical aggregation of SWCNT-AUTs on chemically refined Au(111) substrates was made-up by their spontaneous chemical bonding among carboxyl derivatized SWCNT-COOH and AUT SAM on Au(111), via peptide bonds, or directly by synthesized SWCNT-AUT composites. Raman spectroscopy and AFM surface images obviously disclosed that the SWCNT- AUT (dia. 20~40 nm) has been vertically categorized d on gold (111) substrates, shaping a SAM with a perpendicular direction.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Rahman, M. (2011) Fabrication of self-assembled monolayer using carbon nanotubes conjugated 1-aminoundecanethiol on gold substrates. Natural Science, 3, 208-217. doi: 10.4236/ns.2011.33027.


[1] Iijima, S. (1991) Helical microtubules of graphitic carbon. Nature, 354, 56-58. doi:10.1038/354056a0
[2] Baughrman, R.H., Zakhidov, A.A. and Heer, W.A. (2002) Carbon nanotubes--the route toward applications. Science, 297, 787-792. doi:10.1038/354056a0
[3] Odom, T.W., Huang, J.L., Kim, P. and Lieber C. (1998) Atomic structure and electronic properties of single-walled carbon nanotubes, Nature, 391, 62-64.
[4] Hu, Y., Green M.L.H., Kim Y.H., Lee, J.Y. and Lee, C.J., Decomposition of metal carbides as an elementary step of carbon nanotube synthesis. Applied Surface Science, 26, 145-249.
[5] Vashist, S.K., Zheng, D., Al-Rubeaan, K., Luong, J.H.T. and Sheu, F.S. (2011) Advances in carbon nanotube based electrochemical sensors for bioanalytical application. Advanced Biotech, 29, 169-188. doi:10.1016/j.biotechadv.2010.10.002
[6] Ulman, A. (1990) Self-assembled organic films on gold and silver. Advanced Materials, 2, 573-582. doi:10.1002/adma.19900021203
[7] Liu, Z.F., Shen, Z.Y., Zhu, T., Hou, S.F., Ying, L.Z., Shi, Z.J. and Gu, Z.N. (2000) Chemical alignment of oxidatively shortened single-walled carbon nanotubes on silver surface. Langmuir , 16, 3569-3573. doi:10.1021/la9914110
[8] Ulman, A., Ed. (1991) An introduction to ultrathin organic films: from langmuir-blodgett to self-assembly academic, San Diego Press, San Diego.
[9] Journet, C., Maser, W.K., Bernier, P., Loisear, A., Chapell, M.L.D.L., Lefrant, S., Deniard, P., Lee, R. and Fischer, J. E. (1997) The study of the attachment of a single-walled carbon nanotube to a self-assembled monolayer using x-ray photoelectron spectroscopy. Nature, 388, 756-758. doi:10.1038/41972
[10] Kuzume, A., Herrero, E., Feliu, J.M., Nichols, R.J. and Schiffrin, D.J. (2002) Fullerene self-assembly and supramolecular nanostructures. Physical Chemistry, 6, 619- 625.
[11] Vaccarini, L., Goze, C., Aznar, R., Micholet, V., Journet, C. and Bernier, P. (1999) Mechanical purification of single-walled carbon nanotube bundles from catalytic particles. Synth. Mat., 103, 2492-2493. doi:10.1016/S0379-6779(98)01087-X
[12] Dujardin, E., Ebbesen, T.W., Krishnan, A. and Treacy, M.M. (1998) Purification of single-walled nanotube. Journal of Advanced Materials, 10, 611-613.
[13] Protsailo, L.V. and Fawcett, W.R. (2002) Electrochemical impedance spectroscopy at alkanethiol-coated gold, in propylene carbonate. Langmuir, 18, 8933-8941. doi:10.1021/la0201218
[14] Niyogi, S., Hamon, M.A., Hu, H., Zhao, B., Bhowmik, P., Sen, R., Itkis, M.E. and Haddon, R.C. (2002) Pi-electrons in three –dimensions. Accounts of Chemical Research, 35, 1105-1113. doi:10.1021/ar010155r
[15] Huang, H., Kajiura, H., Yamada, A. and Ata, M. (2002) Electrolysis of water vapor using a fullerene-based nanotube bundles. Chemical Physics Letters, 356, 567-572. doi:10.1016/S0009-2614(02)00415-3
[16] Chapman, R.G., Lin, O.W. and Whitesides, G..M. (2002) Impact of spacers on the hybridization efficiency of mixed self-assembled dna/alkanethiol films. Langmuir, 16, 6927- 6937. doi:10.1021/la991579l
[17] Willner, I. and Riklin, A. (1994) Electrical communication between electrodes and nad(p)+-dependent enzymes using pyrroloquinolinequinone-enzyme electrodes in a self-assembled monolayer configuration: design of a new class of amperometric biosensors. Analytical Chemistry, 66, 1535-1539. doi:10.1021/ac00081a028
[18] Haeussling, L., Ringsdorf, H., Schmidt, F.J. and Knoll, W. (1991) Binding of fullerene c60 to gold surface functioalized by self-assembled monolayers of 8-amino-1-octane thiol: a structure elucidation. Langmuir, 7, 1991, 1837- 1990. doi:10.1021/la00057a001
[19] Shi, Z.J., Lian, Y.F., Liao, F.H., Zhou, Z.H., Gu, Z.N., Zhang, Y.G. and Iijima, S. (1990) Cobalt ferrite aerogels by epoxide sol–gel addition: efficient catalysts for the hydrolysis of 4-nitrophenyl phosphate. Solid Sate Communicaitons, 112, 35.
[20] Janek, R.P., Fawcett, W.R. and Ulman, A. (1998) Impedance spectroscopy of self-assembled monolayers on au (111). Langmuir, 14, 3011-3018. doi:10.1021/la970980+
[21] Finklea, H.O., Snider, D.A., Fedyk, J., Sabatani, E., Gafni, Y. and Rubinstein, I. (1993) Probing pi-coupling in molecular junctions. Langmuir, 9, 3660-3667. doi:10.1021/la00036a050
[22] Cheng, I.F., Whiteley, L.D. and Martin, C.R. (1989) Ultramicroelectrode ensembles: comparison of experimental and theoretical responses and evaluation of electroanalytical detection limits. Analytical Chemistry, 61, 762-766. doi:10.1021/ac00182a024
[23] Riklin, A. and Willner, I. (1995) Glucose and acetylcho- line sensing multilayer. Analytical Chemistry, 67, 4118- 4126. doi:10.1021/ac00118a014
[24] Widrig, C.A, Chung, C. and Porter, M.D. (1991) A catalytic 2-aminoethanethiol reduction on a gold electrode through a sulfur-gold bond formation. Journal of Electroanalytical Chemistry, 310, 335-359. doi:10.1016/0022-0728(91)85271-P
[25] Kondo, T., Sumi, T. and Uosaki, K. (2002) Electrolytic gold deposition on dodecanethiol-modified gold films, Journal of Electroanalytical Chemistry, 538, 59-63. doi:10.1016/S0022-0728(02)01000-8
[26] Byloos, M., Al-Mazna, H. and Morin, M. (1999) Formation of self-assembled. Journal of Physical Chemistry B, 103, 6554-6562. doi:10.1021/jp990642c
[27] Wong, S.S., Joselevich, E., Woolley. A.T., Cheung, C.L. and Lieber, C.M. (1998) Nanotubes as nanometer probes for chemistry and biology. Nature, 394, 52-55. doi:10.1038/27873
[28] Collins, P.G., Zettl, A., Bando, H., Thesis, A. and. Smalley, R.E. (1997) Nanotube nanodevice. Science, 278, 100-103. doi:10.1126/science.278.5335.100
[29] Dillon, A.C., Jones, K.M., Bekkedahl, T.A., Kiang, C.H., Bethune, D.S. and Heben, M. (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature, 386, 377-379. doi:10.1038/386377a0
[30] Kim, B.M., Qian, S. and Bau, H.H. (2005) Filling carbon nanotubes with particles. Nano Letter, 5, 873-878. doi:10.1021/nl050278v
[31] Zeng, L., Zhang, L. and Barron, A.R. (2005) Tailoring aqueous solubility of functionalized single-wall carbon nanotubes over a wide ph range through substituent chain length, Nano Letter, 5, 2001-2004. doi:10.1021/nl0514994
[32] Vera, B., Anton, K., Ulrich, O., Manfred, S., Francüois, S., Robert, J. and Christophe, D. (2006) Ultrathin transparent conductive films of polymer-modified multiwalled carbon nanotubes. Journal of Physical Chemistry B, 110, 14640-14644. doi:10.1021/jp062458e
[33] Ferrari, A. and Robertson, (2000) Interpretation of raman spectra of disordered and amorphous carbon, Physical Reviw B, 61, 14095-14107.
[34] Basca, W.S., Ugarte, D. and Chatelain A. (1994) High pressure studies of the radial breathing modes in double- wall carbon nanotubes. Physical Review B, 50, 15473- 15476. doi:10.1103/PhysRevB.61.14095

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.