Share This Article:

Fabrication and Characterization of Phthalocyanine-Based Organic Solar Cells

Full-Text HTML Download Download as PDF (Size:1450KB) PP. 278-284
DOI: 10.4236/msa.2014.55033    3,742 Downloads   5,399 Views   Citations

ABSTRACT

Organic solar cells using poly (copper phthalocyanine), copper tetrakis (4-cumylphenoxy) phthalocyanine, copper phthalocyanine and titanyl phthalocyanine were fabricated and characterized. Photovoltaic properties of the solar cells with inverted structures were investigated by optical absorption, current density-voltage characteristic and incident photon to current conversion efficiency. These phthalocyanines absorbed light with wavelength longer than 500 nm. A carrier transport mechanism is proposed based on the energy level diagram.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Iwase, M. , Suzuki, A. , Akiyama, T. and Oku, T. (2014) Fabrication and Characterization of Phthalocyanine-Based Organic Solar Cells. Materials Sciences and Applications, 5, 278-284. doi: 10.4236/msa.2014.55033.

References

[1] Hori, T., Miyake, Y., Yamasaki, N., Yoshida, H., Fujii, A., Shimizu, Y. and Ozaki, M. (2010) Solution Processable Organic Solar Cell Based on Bulk Heterojunction Utilizing Phthalocyanine Derivative. Applied Physics Express, 3, 101602-1-3. http://dx.doi.org/10.1143/APEX.3.101602
[2] Hori, T., Fukuoka, N., Masuda, T., Miyake, Y., Yoshida, H., Fujii, A., Shimizuand, Y. and Ozaki, M. (2011) Bulk Heterojunction Organic Solar Cells Utilizing 1,4,8,11,15,18,22,25-Octahexylphthalocyanine. Solar Energy Materials & Solar Cells, 95, 3087-3092. http://dx.doi.org/10.1016/j.solmat.2011.06.039
[3] Bamsey, N.M., Yuen, A.P., Hor, A.M., Klenkler, R., Preston J.S. and Loutfy, R.O. (2011) Integration of an M-phthalocyanine Layer into Solution-Processed Organic Photovoltaic Cells for Improved Spectral Coverage. Solar Energy Materials & Solar Cells, 95, 1970-1973. http://dx.doi.org/10.1016/j.solmat.2011.01.042
[4] Varotto, A., Nam, C.Y., Radivojevic, I., Tome, J.P.C., Cavaleiro, J.A.S., Black C.T. and Drain, C.M. (2010) Phthalocyanine Blends Improve Bulk Heterojunction Solar Cells. Journal of the American Chemical Society, 132, 2552-2554.
http://dx.doi.org/10.1021/ja907851x
[5] Takeda, A., Oku, T., Suzuki, A., Akiyama, T. and Yamasaki, Y. (2013) Fabrication and Characterization of Fullerenebased Solar Cells Containing Phthalocyanine and Naphthalocyanine Dimers.Synthetic Metals, 177, 48-51.
http://dx.doi.org/10.1016/j.synthmet.2013.06.011
[6] Oku, T., Takeda, A., Nagata, A., Kidowaki, H., Kumada, K., Fujimoto, K., Suzuki, A., Akiyama, T., Yamasaki, Y. and ōsawa, E. (2013) Microstructures and Photovoltaic Properties of C60-based Solar Cells with Copper Oxides, CuInS2, Phthalocyanines, Porphyrin, PVK, Nanodiamond, Germanium and Exciton-diffusion Blocking Layers. Materials Technology, 28, 21-39.
http://dx.doi.org/10.1179/1753555712Y.0000000042
[7] Bechara, R., Petersen, J., Gernigon, V., Leveque, P., Heiser, T., Toniazzo, V., Ruchand, D. and Michel, M. (2012) PEDOT:PSS-Free Organic Solar Cells Using TetrasulfonicCopper Phthalocyanine as Buffer Layer. Solar Energy Materials & Solar Cells, 98, 482-485. http://dx.doi.org/10.1016/j.solmat.2011.11.005
[8] Thuy, T., Luong, T., Chen, Z. and Zhu, H. (2010) Flexible Solar Cells based on Copper Phthalocyanine and BuckminsterFullerene. Solar Energy Materials & Solar Cells, 94, 1059-1063.
http://dx.doi.org/10.1016/j.solmat.2010.02.023
[9] Huang, C.J., Ke, J.C., Chen, W.R., Meenand, T.H. and Yang, C.F. (2011) Improved the Efficiency of Small Molecule Organic Solar Cell by Double Anode Buffer Layers. Solar Energy Materials & Solar Cells, 95, 3460-3464.
http://dx.doi.org/10.1016/j.solmat.2011.08.006
[10] Cheng, F., Fang, G., Fan, X., Liu, N., Sun, N., Qin, P., Zheng, Q., Wan, J. and Zhao, X. (2011) Enhancing the ShortCircuit Current and Efficiency of Organic Solar Cells Using MoO3 and CuPc as Buffer Layers. Solar Energy Materials & Solar Cells, 95, 2914-2919. http://dx.doi.org/10.1016/j.solmat.2011.06.027
[11] Snow, A.W., Griffith, J.R. and Marullo, N.P. (1984) Syntheses and Characterization of Heteroatom-Bridged MetalFree Phthalocyanine Network Polymers and Model Compounds. Macromolecules, 17, 1614-1624.
http://dx.doi.org/10.1021/ma00138a033
[12] Romero, P.G., Lee, Y.S. and Kertesz, M. (1988) Band Structure Calculation of Extended Poly(Copper Phthalocyanine) One-Dimensional and Two-Dimensional Polymers. Inorganic Chemistry, 27, 3672-3675.
http://dx.doi.org/10.1021/ic00293a049
[13] Obata, N., Sato, Y., Nakamura, E. and Matsuo, Y. (2011) Small-Molecule-Based Organic Photovoltaic Devices Covering Visible and Near-Infrared Absorption through Phase Transition of Titanylphthalocyanine Induced by Solvent Exposure. Japanese Journal of Applied Physics, 50, 121603-121606. http://dx.doi.org/10.1143/JJAP.50.121603
[14] Placencia, D., Wang, W., Shallcross, R.C., Nebesny, K.W., Brumbach, M. and Armstrong, N.R. (2009) Organic Photovoltaic Cells Based On Solvent-Annealed, Textured Titanyl Phthalocyanine/C60 Heterojunctions. Advanced Functional Materials, 19, 1913-1921.
http://dx.doi.org/10.1002/adfm.200801723
[15] Brumbach, M., Placencia, D. and Armstrong, N.R. (2008) Titanylphthalocyanine/C60Heterojunctions: Band-Edge Offsets and Photovoltaic Device Performance. The Journal of Physical Chemistry C, 112, 3142-3151.
http://dx.doi.org/10.1021/jp0772171
[16] Yamashita, A., Maruno, T. and Hayashi, T. (1994) Phase-Selective Formation of Titanylphthalocyanine Thin Films by Organic Molecular Beam Deposition. The Journal of Physical Chemistry, 98, 12695-12701.
http://dx.doi.org/10.1021/j100099a037
[17] Yoshida, K., Oku, T., Suzuki, A., Akiyamaand, T. and Yamasaki, Y. (2012) Fabrication and Characterization of Phthalocyanine/C60Solar Cells with Inverted Structure. Advances in Chemical Engineering and Science, 2, 461-464.
http://dx.doi.org/10.4236/aces.2012.24056
[18] Kuwabara, T., Nakayama, T., Uozumi, K., Yamaguchi, T. and Takahashi, K. (2008) Highly Durable Inverted-Type Organic Solar Cell Using Amorphous Titanium Oxide as Electron Collection Electrode Inserted between ITO and Organic Layer. Solar Energy Materials & Solar Cells, 92, 1476-1482. http://dx.doi.org/10.1016/j.solmat.2008.06.012
[19] Kawashima, A., Oku, T., Suzuki, A., Kikuchi, K. and Kikuch, S. (2012) Microstructures and Photovoltaic Properties of Polysilane/C60-Based Solar Cells. Materials Sciences and Applications, 43, 557-561.
http://dx.doi.org/10.4236/msa.2012.38079
[20] Motoyoshi, R., Suzuki, A., Kikuchi, K. and Oku, T. (2009) Formation and Characterization of Copper Tetrakis (4-Cumylphenoxy) Phthalocyanine: Perylene Solar Cells. Synthetic Metals, 159, 1345-1348.
http://dx.doi.org/10.1016/j.synthmet.2009.03.010
[21] Oku, T., Nose, S., Yoshida, K., Suzuki, A., Akiyama, T. and Yamasaki, Y. (2013) Fabrication and Characterization of Silicon Naphthalocyanine, Gallium phthalocyanine and Fullerene-Based Organic Solar Cells with Inverted Structures,. Journal of Physics: Conference Series, 433, 012025-1-7. http://dx.doi.org/10.1088/1742-6596/433/1/012025
[22] Yoshida, K., Oku, T., Suzuki, A., Akiyama, T. and Yamasaki, Y. (2013) Fabrication and Characterization of PCBM:P3HT Bulk Heterojunction Solar Cells Doped with Germanium Phthalocyanine or Germanium Naphthalocyanine. Materials Sciences and Applications, 4, 1-5.
http://dx.doi.org/10.4236/msa.2013.44A001
[23] Hiramoto, M., Kitada, K., Iketaki, K. and Kaji, T. (2011) Near Infrared Light Driven Organic p-i-n Solar Cells Incorporating Phthalocyanine J-Aggregate. Applied Physics Letters, 98, 023302-023305.
http://dx.doi.org/10.1063/1.3534804

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.