Share This Article:

Conformal Evolution of Waves in the Yang-Mills Condensate: The Quasi-Classical Approach

Abstract Full-Text HTML XML Download Download as PDF (Size:1037KB) PP. 209-229
DOI: 10.4236/jmp.2014.55032    3,771 Downloads   4,551 Views   Citations

ABSTRACT

We have constructed a consistent system of equations for the Yang-Mills quantum-wave fluctuations in the classical Yang-Mills condensate based on canonical quantization in the Heisenberg representation. Such a quasi-classical system has been thoroughly analyzed in the conformal limit in the linear and quasi-linear approximations, both analytically and numerically. We have found that interaction between waves and condensate triggers a significant transfer or swap of energy from the condensate to the wave modes in the SU(2) gauge theory. Remarkably, a similar energy swap effect has been found in the maximally-supersymmetric N=4 Yang-Mills theory, as well as in the two-condensate SU(4) gauge theory. Such a generic feature of Yang-Mills dynamics opens up vast phenomenological implications in ultra-relativistic Yang-Mills plasma physics.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Pasechnik, R. , Prokhorov, G. and Vereshkov, G. (2014) Conformal Evolution of Waves in the Yang-Mills Condensate: The Quasi-Classical Approach. Journal of Modern Physics, 5, 209-229. doi: 10.4236/jmp.2014.55032.

References

[1] Belavin, A.A., Polyakov, A.M., Schwartz, A.S. and Tyupkin, Y.S. (1975) Physics Letters B, 59, 85-87.
http://dx.doi.org/10.1016/0370-2693(75)90163-X
[2] Schafer, T. and Shuryak, E.V. (1998) Reviews of Modern Physics, 70, 323.
http://dx.doi.org/10.1103/RevModPhys.70.323
[3] Gogohia, V. and Toki, H. (2000) Physical Review D, 61, Article ID: 036006.
[4] Gogohia, V. and Kluge, G. (2000) Physical Review D, 62, Article ID: 076008.
[5] Gal’tsov, D.V. and Davydov, E.A. (2012) International Journal of Modern Physics: Conference Series, 14, 316.
[arXiv:1112.2943].
[6] Galtsov, D.V. and Volkov, M.S. (1991) Physics Letters B, 256, 17-21. http://dx.doi.org/10.1016/0370-2693(91)90211-8
[7] Dyadichev, V.V., Gal’tsov, D.V., Zorin, A.G. and Zotov, M.Y. (2002) Physical Review D, 65, Article ID: 084007.
http://dx.doi.org/10.1103/PhysRevD.65.084007
[8] Gal’tsov, D.V. and Davydov, E.A. (2011) Proceedings of the Steklov Institute of Mathematics, 272, 119-140. [arXiv:1012.2861].
[9] Elizalde, E., Lopez-Revelles, A.J., Odintsov, S.D. and Vernov, S.Y. (2013) Physics of Atomic Nuclei, 76, 996-1003. [arXiv:1201.4302]
[10] Maleknejad, A. and Sheikh-Jabbari, M.M. (2013) Physics Letters B, 723, 224-228. [arXiv:1102.1513].
[11] Maleknejad, A. and Sheikh-Jabbari, M.M. (2011) Physical Review D, 84, Article ID: 043515. [arXiv:1102.1932].
http://dx.doi.org/10.1103/PhysRevD.84.043515
[12] Urban, F.R. and Zhitnitsky, A.R. (2010) Nuclear Physics B, 835, 135-173. [arXiv:0909.2684].
http://dx.doi.org/10.1016/j.nuclphysb.2010.04.001
[13] Pasechnik, R., Beylin, V. and Vereshkov, G. (2013) Journal of Cosmology and Astroparticle Physics, 1306, Article ID: 011. [arXiv:1302.6456].
[14] Pasechnik, R., Beylin, V. and Vereshkov, G. (2013) Physical Review D, 88, Article ID: 023509. [arXiv:1302.5934].
http://dx.doi.org/10.1103/PhysRevD.88.023509
[15] Faddeev, L.D. and Slavnov, A.A. (1991) Gauge Fields. Introduction to Quantum Theory. 2nd Edition, Addison-Wesley, Boston.
[16] Faddeev, L.D. and Popov, V.N. (1967) Physics Letters B, 25, 29-30. http://dx.doi.org/10.1016/0370-2693(67)90067-6
[17] Jackson, J.D. (1999) Classical Electrodynamics. 3rd Edition, Wiley, Hoboken.
[18] Griffiths, D.J. (1999) Introduction to Electrodynamics. 3rd Edition, Prentice Hall, Upper Saddle River.
[19] Blaizot, J.P. and Iancu, E. (1994) Physics Letters B, 326, 138-144.
http://dx.doi.org/10.1016/0370-2693(94)91205-X
[20] Bannur, V.M. (2002) Pramana, 59, 671-677. http://dx.doi.org/10.1007/s12043-002-0077-5
[21] Schenke, B. (2008) Collective Phenomena in the Non-Equilibrium Quark-Gluon Plasma. Ph.D. Thesis. [arXiv:0810.4306].
[22] Gliozzi, F., Scherk, J. and Olive, D.I. (1977) Nuclear Physics B, 122, 253-290.
http://dx.doi.org/10.1016/0550-3213(77)90206-1
[23] Bogoliubov, N.N. and Shirkov, D.V. (1982) Quantum Fields. Addison-Wesley, Boston.
[24] Landau, L.D. and Lifshitz, E.M. (1980) The Classical Theory of Fields. Course of Theoretical Physics Series, 4th Edition, Vol. 2, Butterworth-Heinemann, Oxford.
[25] Hautot, A. and Magnus, A. (1979) Journal of Computational and Applied Mathematics, 5, 3-15.
http://dx.doi.org/10.1016/0771-050X(79)90021-4
[26] Batalin, I.A. and Vilkovisky, G.A. (1981) Physics Letters B, 102, 27-31.
http://dx.doi.org/10.1016/0370-2693(81)90205-7
[27] Batalin, I.A. and Vilkovisky, G.A. (1983) Physical Review D, 28, 2567. [Erratum-ibid. D 30, 508 (1984)].
http://dx.doi.org/10.1103/PhysRevD.28.2567

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.