Share This Article:

Up-regulation of tight junction-related proteins and increase of human epidermal keratinocytes barrier function by Saccharomycosis ferment filtrate

Abstract Full-Text HTML Download Download as PDF (Size:980KB) PP. 15-24
DOI: 10.4236/jcdsa.2011.11003    5,859 Downloads   13,816 Views   Citations

ABSTRACT

Saccharomycopsis ferment filtrate (SFF), mainly used in skin care products, has been reported to inhibit inflammatory nitric oxide production and prevent epidermal damage. However, the effects of SFF on epidermal keratinocytes have not yet been explored. We investigated the effects of SFF on skin barrier function using human primary epidermal keratinocytes. Cell viability was determined by MTT assay. The mRNA and protein expression levels of tight junction proteins (claudin-1, -3, -4, occludin, ZO-1) were analyzed by RT-PCR and Western blotting, respectively. The effect of SFF on the barrier formation of epidermal keratinocytes was measured by transepithelial electrical resistance (TER). Rescue of cell death from H2O2 treatment was evaluated by annexin V staining. SFF, at concentrations that did not cause significant change of cell viability, induced dose-dependent cell-cell adhesion and formation of an organized monolayer structure. Pretreatment of keratinocytes with EGTA, a Ca2+ chelator, did not inhibit the cell-cell adhesion of keratinocytes by SFF, indicating a Ca2+-independent mechanism. The mRNA and protein levels of claudin-1 in keratinocytes were up-regulated by SFF treatment in a dose-dependent manner. The expressions of other tight junctions (TJs) including claudin-3 & 4, occludin and ZO-1 were also similarly increased in SFF-treated epidermal keratinocytes. The promoting effect of SFF on the barrier function of epidermal keratinocytes was further confirmed by the increased TER value in SFF-treated epidermal keratinocytes. Annexin V staining confirmed that SFF markedly decreased the number of dead cells resulted from H2O2 injury. Taken together, our results provided the first evidence that SFF enhanced keratinocytes barrier function by increasing the expression of TJs and TER.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

J. Pang, W. Wong, T. Hakozaki, T. Yoshii and T. Chen, "Up-regulation of tight junction-related proteins and increase of human epidermal keratinocytes barrier function by Saccharomycosis ferment filtrate," Journal of Cosmetics, Dermatological Sciences and Applications, Vol. 1 No. 1, 2011, pp. 15-24. doi: 10.4236/jcdsa.2011.11003.

References

[1] N. Kitson and J. L. Thewalt, “Hypothesis: The Epidermal Permeability Barrier is A Porous Medium,” Acta Dermato-Venereologica Supplementum, Vol. 208, 2000, pp: 12-15. doi:10.1080/000155500750042808
[2] P. W. Wertz, “Lipids and Barrier Function of the Skin,” Acta Dermato-Venereologica Supplementum, Vol. 208, 2000, pp. 7-11. doi:10.1080/000155500750042790
[3] M. Furuse, M. Hata, K. Furuse, Y. Yoshida, A. Haratake and Y. Sugitani, et al, “Claudin-Based Tight Junctions Are Crucial for The Mammalian Epidermal Barrier: A Lesson From Claudin-1-Deficient Mice, ” Journal of Cell Biology, Vol. 156, No. 6, 2002, pp. 1099-1111. doi:10.1083/jcb.200110122
[4] M. Malminen, V. Koivukangas, J. Peltonen, S. L. Karvonen, A. Oikarinen and S. Peltonen, “Immunohistological Distribution of The Tight Junction Components ZO-1 and Occludin In Regenerating Human Epidermis,” British Journal of Dermatology, Vol. 149, No. 2, 2003, pp. 255-260. doi:10.1046/j.1365-2133.2003.05438.x
[5] K. Pummi, M. Malminen, H. Aho, S. L. Karvonen, J. Peltonen and S. Peltonen, “Epidermal Tight Junctions: Zo-1 and Occludin Are Expressed In Mature, Developing and Affected Skin and In Vitro Differentiating Keratinocytes,” Journal of Investigative Dermatology, Vol. 117, No. 5, 2001, pp. 1050-1058. doi:10.1046/j.0022-202x.2001.01493.x
[6] K. Morita and Y. Miyachi, “Tight Junctions in the Skin,” Journal of Dermatological Science, Vol. 31, No. 2, 2003, pp. 81-89. doi:10.1016/S0923-1811(03)00038-0
[7] T. Yuki, A. Haratake, H. Koishikawa, K. Morita, Y. Miyachi and S. Inoue, “Tight Junction Proteins in Keratinocytes: Localization and Contribution to Barrier Function,” Expiermental Dermatology, Vol. 16, 2007, pp. 324-330. doi:10.1111/j.1600-0625.2006.00539.x
[8] J. M. Brandner, S. Kief, E. Wladykowski, P. Houdek and I. Moll, “Tight Junction Proteins In The Skin,” Skin Pharmacology & Physiology, Vol. 1919, No. 2, pp. 71-77.
[9] D. Tsuruta, K. J. Green, S. Getsios and J. C. Jones, “The Barrier Function of Skin: How to Keep A Tight Lid On Water Loss,” Trends in Cell Biology, Vol. 12, No. 8, 2002, pp. 355-357. doi:10.1016/S0962-8924(02)02316-4
[10] G. Bazzoni and E. Dejana, “Keratinocyte Junctions and The Epidermal Barrier: How to Make A Skin-Tight Dress,” Journal of Cell Biology, Vol. 156, No. 6, 2002, pp. 947-949. doi:10.1083/jcb.200202116
[11] T. Yuki, A. Haratake, H. Koishikawa, K. Morita, Y. Miyachi and S. Inoue, “Tight Junction Proteins In Keratinocytes: Localization and Contribution to Barrier Function,” Expiermental Dermatology, Vol. 16, 2007, pp. 324-330. doi:10.1111/j.1600-0625.2006.00539.x
[12] J. P. Bentley, T. K. Hunt, J. B. Weiss, C. M. Taylor, A. N. Hanson, G. H. Davies, et al, “Peptides from Live Yeast Cell Derivative Stimulate Wound Healing,” Archives of Surgery, Vol. 125, No. 5, 1990, pp. 641-646.
[13] J. Z. Kaplan, “Acceleration of Wound Healing by A Live Yeast Cell Derivative,” Archives of Surgery, Vol. 119, No. 9, 1984, pp. 1005-1008.
[14] A. J. Dart, B. A. Dowling, C. L. Smith, “Topical treatments in equine wound management,” Equine Practice, Vol. 21, No. 1, 2005, pp. 77-89. doi:10.1016/j.cveq.2004.11.003
[15] J. M. Liptak, “An Overview of the Topical Management of Wounds,” Australian Veterinary Journal, Vol. 75, No. 6, 1997, pp. 408-413. doi:10.1111/j.1751-0813.1997.tb14342.x
[16] M. J. Crowe, R. B. McNeill, D. J. Schlemm, D. G. Greenhalgh and S. J. Keller, “Topical Application of Yeast Extract Accelerates The Wound Healing Of Diabetic Mice,” Journal of Burn Care & Rehabilitation, Vol. 2, 1920, pp. 155-162.
[17] H. H. Tsai, Y. C. Chen, W. R. Lee, C. H. Hu, T. Hakozaki and T. Yoshii, et al, “Inhibition of Inflammatory Nitric Oxide Production and Epidermis Damages by Saccharomycopsis Ferment Filtrate,” Journal of Dermatological Science, Vol. 42, No. 3, 2006, pp. 249-257. doi:10.1016/j.jdermsci.2006.01.009
[18] K. Ikeyama, S. Fuziwara and M. Denda, “Topical Application Of Neuronal Nitric Oxide Synthase Inhibitor Accelerates Cutaneous Barrier Recovery and Prevents Epidermal Hyperplasia Induced By Barrier Disruption,” Journal of Investigative Dermatology, Vol. 127, No. 7, 2007, pp. 1713-1719.
[19] S. Basuroy, A. Seth, B. Elias, A. P. Naren and R. Rao, “MAPK Interacts With Occludin and Mediates Egf-Induced Prevention of Tight Junction Disruption by Hydrogen Peroxide,” Biochemical Journal, Vol. 393, No. 1, 2006, pp. 69-77. doi:10.1042/BJ20050959
[20] H. S. Lee, K. Namkoong, D. H. Kim, K. J. Kim, Y. H. Cheong and S. S. Kim, et al, “Hydrogen Peroxide-Induced Alterations of Tight Junction Proteins In Bovine Brain Microvascular Endothelial Cells,” Microvascular Research, Vol. 68, No. 3, 2004, pp. 231-238. doi:10.1016/j.mvr.2004.07.005
[21] J. C. Jones and R. D. Goldman, “Intermediate Filaments and The Initiation of Desmosome Assembly,” Journal of Cell Biology, Vol. 101, No. 2, 1985, pp. 506-517. doi:10.1083/jcb.101.2.506
[22] E. J. O'Keefe, R. A. Briggaman and B. Herman, “Calcium-Induced Assembly of Adherens Junctions in Keratinocytes,” Journal of Cell Biology, Vol. 105, No. 2, 1987, pp. 807-817. doi:10.1083/jcb.105.2.807
[23] H. Hennings and K. A. Holbrook, “Calcium Regulation of Cell-Cell Contact and Differentiation of Epidermal Cells in Culture. An ultrastructural study,” Experimental Cell Research, Vol. 143, No. 1, 1983, pp. 127-142. doi:10.1016/0014-4827(83)90115-5
[24] M. D. Kubler, P. W. Jordan, C. H. O'Neill and F. M. Watt, “Changes In The Abundance and Distribution of Actin and Associated Proteins During Terminal Differentiation of Human Epidermal Keratinocytes,” Journal of Cell Science 100, 1991, pp. 153-65.
[25] J. E. Lewis, P. J. Jensen and M. J. Wheelock, “Cadherin Function Is Required for Human Keratinocytes to Assemble Desmosomes and Stratify In Response to Calcium,” Journal of Investigative Dermatology, Vol. 102, No. 6, 1994, pp. 870-877. doi:10.1111/1523-1747.ep12382690
[26] K. Pummi, M. Malminen, H. Aho, S. L. Karvonen, J. Peltonen and S. Peltonen, “Epidermal Tight Junctions: Zo-1 and Occludin Are Expressed In Mature, Developing and Affected Skin and In Vitro Differentiating Keratinocytes,” Journal of Investigative Dermatology, Vol. 117, No. 5, 2001, pp. 1050-1058. doi:10.1046/j.0022-202x.2001.01493.x
[27] S. A. Francis, J. M. Kelly, J. McCormack, R. A. Rogers, J. Lai and E. E. Schneeberger, et al, “Rapid Reduction of MDCK Cell Cholesterol by Methyl-Beta-Cyclodextrin Alters Steady State Transepithelial Electrical Resistance,” European Journal of Cell Biology, Vol. 78, No. 7, 1999, pp. 473-484.
[28] D. Roop, “Defects in the Barrier,” Science, Vol. 267, No. 5197, 1995, pp. 474-475. doi:10.1126/science.7529942
[29] T. Yuki, A. Haratake, H. Koishikawa, K. Morita and Y. Miyachi, “Tight Junction Proteins In Keratinocytes: Localization and Contribution to Barrier Function,” Experimental Dermatology, Vol. 16, No. 4, 2007, pp. 324-330. doi:10.1111/j.1600-0625.2006.00539.x
[30] F. M. Watt, “Stem cell fate and patterning in mammalian epidermis,” Current Opinion in Genetics & Development, Vol. 11, No. 4, 2001, pp. 410-477. doi:10.1016/S0959-437X(00)00211-2
[31] S. Getsios, A. C. Huen and K. J. Green, “Working Out The Strength And Flexibility of Desmosomes,” Nature Reviews Molecular Cell Biology, Vol. 5, No. 4, pp: 271-281. doi:10.1038/nrm1356
[32] K. Matter, S. Aijaz, A. Tsapara and M. S. Balda, “Mammalian Tight Junctions in the Regulation of Epithelial Differentiation and Proliferation,” Current Opinion in Cell Biology, Vol. 17, No. 5, 2005, pp. 453-458. doi:10.1016/j.ceb.2005.08.003
[33] F. Kramer, K. White and M. Kubbies, et al, “Genomic Organization of Claudin-1 and Its Assessment in Hereditary and Sporadic Breast Cancer,” Human Genetics, Vol. 107, 2007, pp. 249-256.
[34] K. Swisshelm, A. Machl, S. Planitzer, R. Robertson, M. Kubbies and S. Hosier, “SEMP1, A Senescence-Associated cDNA Isolated From Human Mammary Epithelial Cells, Is A Member of An Epithelial Membrane Protein Superfamily,” Gene, Vol. 226, No. 2, 1999, pp. 285-295. doi:10.1016/S0378-1119(98)00553-8
[35] K. Morita, S. Tsukita and Y. Miyachi, “Tight Junction- Associated Proteins (Occludin, Zo-1, Claudin-1, Claudin-4) In Squamous Cell Carcinoma and Bowen's Disease,” British Journal of Dermatolog, Vol. 151, No. 2, 2004, pp. 328-334. doi:10.1111/j.1365-2133.2004.06029.x
[36] J. L. Leveque, P. Corcuff, R. J. de and P. Agache, “In Vivo Studies of The Evolution of Physical Properties of the Human Skin with Age,” International Journal of Dermatology, Vol. 23, No. 5, 1984, pp. 322-329. doi:10.1111/j.1365-4362.1984.tb04061.x
[37] K. V. Roskos and R. H. Guy, “Assessment of Skin Barrier Function Using Transepidermal Water Loss: Effect of Age,” Pharmaceutical Research, Vol. 6, No. 11, 1989, pp: 949-953. doi:10.1023/A:1015941412620
[38] K. P. Wilhelm, A. B. Cua and H. I. Maibach, “Skin aging effect on Transepidermal Water Loss, Stratum Corneum Hydration, Skin Surface Ph and Casual Sebum Content,” Archives of Dermatology, Vol. 127, No. 12, 1991, pp. 1806-1809. doi:10.1001/archderm.127.12.1806
[39] D. C. Barnard, K. Ryan, J. L. Manley and J. D. Richter, “Symplekin and xGLD-2 are required for Cpeb-Mediated Cytoplasmic Polyadenylation,” Cell, Vol. 119, No. 5, 2004, pp. 641-651. doi:10.1016/j.cell.2004.10.029

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.