Share This Article:

Predictive Analysis of Microarray Data

Abstract Full-Text HTML Download Download as PDF (Size:253KB) PP. 63-68
DOI: 10.4236/ojgen.2014.41009    4,588 Downloads   6,046 Views   Citations


Microarray gene expression data are analyzed by means of a Bayesian nonparametric model, with emphasis on prediction of future observables, yielding a method for selection of differentially expressed genes and the corresponding classifier.

Cite this paper

Marques F., P. and B. Pereira, C. (2014) Predictive Analysis of Microarray Data. Open Journal of Genetics, 4, 63-68. doi: 10.4236/ojgen.2014.41009.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Friend, S.H. and Stoughton, R.B. (2002) The Magic of Microarrays. Scientific American, 286, 34-41.
[2] De Finetti, B. (1974) Theory of Probability (Two Volumes). John Wiley & Sons, Hoboken.
[3] GEO Dataset GDS3713.
[4] Pan, F., Yang, T.L., Chen, X.D., Chen, Y., Gao, G., Liu, Y.Z., Pei, Y.F., Sha, B.Y., Jiang, Y., Xu, C., Recker, R.R. and Deng, H.W. (2010) Impact of Female Cigarette Smoking on Circulating B Cells in Vivo: The Suppressed ICOSLG, TCF3, and VCAM1 Gene Functional Network May Inhibit Normal Cell Function. Immunogenetics, 62, 237-251.
[5] Wall, L., Christiansen, T. and Orwant, J. (2000) Programming Perl. 3rd Edition, O’Reilly Media, Sebastopol.
[6] Ferguson, T. (1972) A Bayesian Analysis of Some Nonparametric Problems. The Annals of Statistics, 1, 209-230.
[7] Schervish, M.J. (1997) Theory of Statistics. Springer-Verlag, Berlin.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.