Share This Article:

Bioflavonoids as Important Component of Biological Protection from Ionizing Radiation

Full-Text HTML XML Download Download as PDF (Size:192KB) PP. 472-479
DOI: 10.4236/fns.2014.55056    3,390 Downloads   4,762 Views   Citations

ABSTRACT

New advances in the area of deciphering the mechanism for a possible modification of the biological effects of radiation exposure at the genetic level make it possible to distinguish the group of radiation protective agents having their own specific features in the implementation of their beneficial effects. The mechanism of the radioprotective action of bioflavonoids is worthy of a detailed analysis in view of their great biological importance. Radiobiological studies show that antioxidants can reduce the radiation damage to membranes and favor more adequate energy dependent adaptive and reparative processes after the exposure to radiation. Bioflavonoids are significant component of biological protection for a enhance of resistance of the body to environmental factors that are adverse for human health, including ionizing radiation, with reducing the risk of carcinogenic effects and decreasing the biological age. The best practical value of bioflavonoids, can be considered as the agents for prophylaxis against the development of oxidative stress. These are the reasons why the administration of natural antioxidants have a pathogenetic justification for exposures to chronic (months, years) low-rate-dose ionizing radiation. These agents were previously and are currently being developed for use during long-term, low-ratedose exposures to radiation, under conditions of long space missions. Acting as low-dose stressors through a hormetic mechanism and a “substrate” support of adaptive shifts radiomodulators results in an increase in the antioxidant defense of the body and the rearrangement of its functioning in the new environment with the modulation of gene expression of antioxidant response elements by activation of Nrd2/KeapI and Sirtuin/FoxO pathways and a decrease in the transcription factor NF-κB.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Vasin, M. (2014) Bioflavonoids as Important Component of Biological Protection from Ionizing Radiation. Food and Nutrition Sciences, 5, 472-479. doi: 10.4236/fns.2014.55056.

References

[1] M. V. Vasin, “Classification of Agents of Radiation Damage Prophylaxis as Formation of Conceptual Basis of Modern Radiation Pharmacology,” Radiatsionnaia Biologiia Radioecologiia, Vol. 29, No. 2-3, 1999, pp. 212-222.
[2] K. N. Prasad, “Rationale for Using Multiple Antioxidants in Protecting Humans against Low Doses of Ionizing Radiation,” British Journal of Radiology, Vol. 78, No. 930, 2005, pp. 485-492.
http://dx.doi.org/10.1259/bjr/87552880
[3] R. Arora, “Herbal Radiomodulators: Applications in Medicine, Homeland Defence and Space,” CABI, Cambridge, 2008.
http://dx.doi.org/10.1079/9781845933951.0000
[4] P. P. Saksonov, V. V. Antipov and B. I. Davydov, “Outline of Space Radiobiology. Problems of Space Biology,” National Aeronautics and Space Administration (NASA), Washington, 1972.
[5] P. P. Saksonov, “Protection against Radiation (Biological, Pharmacological, Chemical, Physical),” In: P. P. Saksonov, Ed., Foundation of Space Biology and Medicine, Vol. 3, National Aeronautics and Space Administration, Washington, 1975, pp. 316-347.
[6] T. P. Devasagayam, J. C. Tilak, K. K. Boloor, K. S. Sane, S. S. Ghaskadbi and R. D. Lele, “Free Radicals and Antioxidants in Human Health: Current Status and Future Prospects,” Journal of Association of Physicians of India, Vol. 52, 2004, pp. 794-804.
[7] M. W. Epperly, H. Wang, J. A. Jones, T. Dixon, C. A. Montesinos and J. S. Greenberger, “Antioxidant-Chemoprevention Diet Ameliorates Late Effects of Total-Body Irradiation and Supplements Radioprotection by MnSODPlasmid Liposome Administration,” Radiation Research, Vol. 175, No. 6, 2011, pp. 759-765.
http://dx.doi.org/10.1667/RR2398.1
[8] V. A. Baraboi, “Biological Action of Vegetable Phenol Compounds,” Nauka Dumka, Kiev, 1976.
[9] T. Nagata, S. Todoriki, T. Masumizu, I. Suda, S. Furuta, Z. Du and S. Kikuchi, “Levels of Active Oxygen Species Are Controlled by Ascorbic Acid and Anthocyanin in Arabidopsis,” Journal of Agricultural Food and Chemistry, Vol. 51, No.10, 2003, pp. 2992-2999.
http://dx.doi.org/10.1021/jf026179+
[10] N. I. Gushcha, G. I. Perkovskaia, A. P. Dmitriev and D. M. Grodzinskii, “The Influence of Chronic Irradiation on Adaptive Potential of Plants,” Radiatsionnaia Biologia Radioekologia, Vol. 42, No. 2, 2002, pp. 155-158.
[11] Y. J. Jeong, Y. J. Choi, H. M. Kwon, S. W. Kang, H. S. Park, M. Lee and Y. H. Kang, “Differential Inhibition of Oxidized LDL-Induced Apoptosis in Human Endothelial Cells Treated with Different Flavonoids,” British Journal of Nutrition, Vol. 93, No. 5, 2005, pp. 581-591.
http://dx.doi.org/10.1079/BJN20041397
[12] P. Uma Devi, A. Ganasoundari, B. Vrinda, K. K. Srinivasan and M. K. Unnikrishnan, “Radiation Protection by the Ocimum Flavonoids Orientin and Vicenin: Mechanisms of Action,” Radiation Research, Vol. 154, No. 4, 2000, pp. 455-460.
http://dx.doi.org/10.1667/0033-7587(2000)154[0455:RPBTOF]2.0.CO;2
[13] D. Bagchi, M. Bagchi, S. J. Stohs, D. K. Das, S. D. Ray, C. A. Kuszynski, S. S. Joshi and H. G. Pruess, “Free Radicals and Grape Seed Proanthocyanidin Extract: Importance in Human Health and Disease Prevention,” Toxicology, Vol. 148, No. 2-3, 2000, pp. 187-197.
http://dx.doi.org/10.1016/S0300-483X(00)00210-9
[14] V. G. Makarov, M. N. Makarova and A. I. Selezneva, “Studying the Mechanism of Antioxidant Effect of Vitamins and Flavonoids,” Voprosy Pitaniia, Vol. 74, No. 1, 2005, pp. 10-13.
[15] M. N. MakarovaV. G. Makarov, and I. G. Zenkevich, “Antiradical Activity of Flavonoids and Their Combination with Other Antioxidants,” Farmatsiia, No. 2, 2004, pp. 30-32.
[16] N. Begum, N. R. Prasad, G. Kanimozhi and A. Q. Hasan, “Apigenin Ameliorates Gamma Radiation-Induced Cytogenetic Alterations in Cultured Human Blood Lymphocytes,” Mutation Research, Vol. 747, No. 1, 2012, pp. 71-76.
[17] N. K. Janjua, A. Siddiqa, A. Yaqub, S. Sabahat, R. Qureshi and S. U. Haque, “Spectrophotometric Analysis of Flavonoid-DNA Binding Interactions at Physiological Conditions,” Spectrochimica Acta. Part A. Molecular and Biomolecular Spectroscopy, Vol. 74, No. 5, 2009, pp. 1135-1137.
http://dx.doi.org/10.1016/j.saa.2009.09.022
[18] E. Middleton Jr., C. Kandaswami and T. C. Theoharides, “The Effects of Plant Flavonoids on Mammalian Cells: Implications for Inflammation, Heart Disease, and Cancer,” Pharmacological Reviews, Vol. 52, No. 4, 2000, pp. 673-751.
[19] J. Castillo, O. Benavente-Garcia, J. Lorente, M. Alcaraz, A. Redondo, A. Ortuño and J. A. Del Rio, “Antioxidant Activity and Radioprotective Effects against Chromosomal Damage Induced in Vivo by X-Rays of Flavan-3-ols (Procyanidins) from Grape Seeds (Vitis vinifera): Comparative Study versus Other Phenolic and Organic Compounds,” Journal of Agricultural Food Chemistry, Vol. 46, No. 5, 2000, pp. 1738-1745.
http://dx.doi.org/10.1021/jf990665o
[20] W. Greenrod and M. Fenech, “The Principal Phenolic and Alcoholic Components of Wine Protect Human Lymphocytes against Hydrogen Peroxideand Ionizing RadiationInduced DNA Damage in Vitro,” Mutagenesis, Vol. 18, No. 2, 2003, pp. 119-126.
http://dx.doi.org/10.1093/mutage/18.2.119
[21] H. Yoshioka, G. Akai, K. Yoshinaga, K. Hasegawa and H. Yoshioka, “Protecting Effect of a Green Tea Percolate and Its Main Constituents against Gamma Ray-Induced Scission of DNA,” Bioscience, Biotechnology, and Biochemistry, Vol. 60, No. 1, 1996, pp. 117-119.
http://dx.doi.org/10.1271/bbb.60.117
[22] H. Yoshioka, H. Kurosaki, K. Yoshinaga, K. Saito and H. Yoshioka, “Beta Ray-Induced Scission of DNA in Tritiated Water and Protection by a Green Tea Percolate and (-)-Epigallocatechin Gallate,” Bioscience, Biotechnology, and Biochemistry, Vol. 61, No. 9, 1997, pp. 1560-1563.
http://dx.doi.org/10.1271/bbb.61.1560
[23] G. C. Jagetia and T. K. Reddy, “The Grapefruit Flavanone Naringin Protects against the Radiation-Induced Genomic Instability in the Mice Bone Marrow: A Micronucleus Study,” Mutation Research, Vol. 519, No. 1-2, 2002, pp. 37-48.
http://dx.doi.org/10.1016/S1383-5718(02)00111-0
[24] K. N. Rithidech, M. Tungjai and E. B. Whorton, “Protective Effect of Apigenin on Radiation-Induced Chromosomal Damage in Human Lymphocytes,” Mutation Research, Vol. 585, No. 1-2, 2005, pp. 96-104.
http://dx.doi.org/10.1016/j.mrgentox.2005.04.003
[25] K. Shimoi, S. Masuda M. Furugori, S. Esaki and N. Kinae, “Radioprotective Effect of Antioxidative Flavonoids in Gamma-Ray Irradiated Mice,” Carcinogenesis, Vol. 15, No. 11, 1994, pp. 2669-2672.
http://dx.doi.org/10.1093/carcin/15.11.2669
[26] A. Harper, D. J. Kerr, A. Gescher and J. K. Chipman, “Antioxidant Effects of Isoflavonoids and Lignans, and Protection against DNA Oxidation,” Free Radical Research, Vol. 31, No. 2, 1999, pp. 149-160.
http://dx.doi.org/10.1080/10715769900301661
[27] O. Benavente-Garcia, J. Castillo, J. Lorente and M. Alcaraz,“Radioprotective Effects in Vivo of Phenolics Extracted from Olea Europaea L. Leaves against X-RayInduced Chromosomal Damage: Comparative Study versus Several Flavonoids and Sulfur-Containing Compounds,” Journal of Medicinal Food, Vol. 5, No. 3, 2002, pp. 125-135.
http://dx.doi.org/10.1089/10966200260398152
[28] G. C. Jagetia and T. K. Reddy, “Modulation of RadiationInduced Alteration in the Antioxidant Status of Mice by Naringin,” Life Science, Vol. 77, No. 7, 2005, pp. 780-794.
http://dx.doi.org/10.1016/j.lfs.2005.01.015
[29] A. K. Akhmadieva, S. I. Zaichkina, R. K. Ruzieva and E. E. Ganassi, “The Protective Action of a Natural Preparation of Anthocyan (Pelargonidin-3,5-Diglucoside),” Radiobiologiia, Vol. 33, No. 3, 1993, pp. 433-435.
[30] T. A. Davis, T. K. Clarke, S. R. Mog and M. R. Landauer, “Subcutaneous Administration of Genistein Prior to Lethal Irradiation Supports Multilineage, Hematopoietic Progenitor Cell Recovery and Survival,” International Journal of Radiation Biology, Vol. 83, No. 3, 2007, pp. 141-151.
http://dx.doi.org/10.1080/09553000601132642
[31] M. R. Landauer, V. Srinivasan and T. M. Seed, “Genistein Treatment Protects Mice from Ionizing Radiation Injury,” Journal of Applied Toxicology, Vol. 23, No. 6, 2003, pp. 379-385.
http://dx.doi.org/10.1002/jat.904
[32] N. Orsoli?, V. Benkovi?, A. Horvat-Knezevi?, N. Kopjar, I. Kosalec, M. Bakmaz, Z. Mihaljevi?, K. Bendelja and I. Basi?, “Assessment by Survival Analysis of the Radioprotective Properties of Propolis and Polyphenolic Compounds,” Biological and Pharmaceutical Bulletin, Vol. 30, No. 5, 2007, pp. 946-951.
http://dx.doi.org/10.1248/bpb.30.946
[33] S. A. Bol’shakova, G. G. Вatulina and T. N. Tuzhilkova, “The Influence of Rowanberry Extract to Body Resistance to Radiation and Other Extremal Factors,” In: Radiation Injury and Its Modification, Nauka, Moscow, 1985, pp. 86-90.
[34] V. K. Singh, M. B. Grace, V. I. Parekh, M. H. Whitnall and M. R. Landauer, “Effects of Genistein Administration on Cytokine Induction in Whole-Body Gamma Irradiated Mice,” International Immunopharmacology, Vol. 9, No. 12, 2009, pp. 1401-1410.
[35] R. M. Day, M. Barshishat-Kupper, S. R. Mog, E. A. McCart, P. G. Prasanna, T. A. Davis and M. R. Landauer, “Genistein Protects against Biomarkers of Delayed Lung Sequelae in Mice Surviving High-Dose Total Body Irradiation,” Journal of Radiation Research, Vol. 49, No. 4, 2008, pp. 361-372. http://dx.doi.org/10.1269/jrr.07121
[36] P. Okunieff, S. Swarts, P. Keng, W. Sun, W. Wang, J. Kim, S. Yang, H. Zhang, C. Liu, J. P. Williams, A. K. Huser and L. Zhang, “Antioxidants Reduce Consequences of Radiation Exposure,” Advances in Experimental Medicine and Biology, Vo. 614, Springer, Berlin, 2008, pp. 165-178.
http://dx.doi.org/10.1007/978-0-387-74911-2_20
[37] K. S. Chertkov and V. M. Petrov, “Pharmacological-Chemical Protection and Substitutive Therapy as Component of System of Radiation Safety for Cosmonauts in Mission to Mars,” Aviakosmicheskaia and Ekologicheskaia Medicina, Vol. 27, No. 5-6, 1993, pp. 32-37.
[38] N. D. Turner, L. A. Braby, J. Ford and J. R. Lupton, “Opportunities for Nutritional Amelioration of Radiation-Induced Cellular Damage,” Nutrition, Vol. 18, No. 10, 2002, pp. 904-912.
http://dx.doi.org/10.1016/S0899-9007(02)00945-0
[39] B. M. Rabin, B. Shukitt-Hale, J. Joseph and P. Todd, “Diet as a factor in Behavioral Radiation Protection Following Exposure to Heavy Particles,” Gravitational and Space Biology Bulletin, Vol. 18, No. 2, 2005, pp. 71-77.
[40] I. B. Ushakov and M. V. Vasin, “Radiation Protectors within the Radiation Safety System for Extended Duration Exploration Missions,” Aviakosmicheskaia and Ekologicheskaia Medicina, Vol. 45, No. 3, 2011, pp. 3-12.
[41] N. Orsoli?, V. Benkovi?, A. Horvat-Knezevi?, N. Kopjar, I. Kosalec, M. Bakmaz, Z. Mihaljevi?, K. Bendelja and I. Basi?, “Assessment by Survival Analysis of the Radioprotective Properties of Propolis and Polyphenolic Compounds,” Biological and Pharmaceutical Bulletin, Vol. 30, No. 5, 2007, pp. 946-951.
http://dx.doi.org/10.1248/bpb.30.946
[42] Z. L. Fan, Z. Y. Wang, L. L. Zuo and S. Q. Tian, “Protective Effect of Anthocyanins from Lingonberry on Radiation-Induced Damages,” International Journal of Environmental Research and Public Health, Vol. 9, No. 12, 2012, pp. 4732-4743. http://dx.doi.org/10.3390/ijerph9124732
[43] K. Pradeep, K. C. Ko, M. H. Choi, J. A. Kang, Y. J. Chung and S. H. Park, “Protective Effect of Hesperidin, a Citrus Flavanoglycone, against γ-Radiation-Induced Tissue Damage in Sprague-Dawley Rats,” Journal of Medicinal Food, Vol. 15, No. 5, 2012, pp. 419-427.
http://dx.doi.org/10.1089/jmf.2011.1737
[44] H. Selye, “The Nature of Stress,” Basal Fact, Vol. 7, 1985, pp. 3-11.
[45] L. K. Garkavi, E. B. Kvakina, A. K. Mulatova and A. I. Shikhliarova, “Enhancement of Antitumor Resistance by Means of Small Doses of Adrenaline,” Voprosy Onkologii, Vol. 26, No. 6, 1980, pp. 48-53.
[46] D. G. Lindsay, “Nutrition, Hormetic Stress and Health,” Nutrition Research Reviews, Vol. 182, No. 2, 2005, pp. 249-258. http://dx.doi.org/10.1079/NRR2005110
[47] A. Speciale, J. Chirafisi, A. Saija and F. Cimino, “Nutritional Antioxidants and Adaptive Cell Responses: An Update,” Current Molecular Medicine, Vol. 11, No. 9, 2011, pp. 770-789.
http://dx.doi.org/10.2174/156652411798062395
[48] P. Renard, M. D. Zachary, C. Bougelet, M. E. Mirault, G. Haegeman, J. Remacle and M. Raes, “Effect of Antioxidant Enzyme Modulations on Interleukin-1-Induced Nuclear Factor Kappa B Activation,” Biochemical Pharmacology, Vol. 53, No. 2, 1997, pp. 149-160.
[49] J. C. Chen, F. M. Ho, P. D. L. Chao, C. P. Chen, K. C. Jeng, H. B. Hsu, S. T. Lee, W. T. Wu and W. W. Lin, “Inhibition of iNOS Gene Expression by Quercetin Is Mediated by the Inhibition of IkappaB kinase, Nuclear Factor-kappa B and STAT1, and Depends on Heme Oxygenase-1 Induction in Mouse BV-2 Microglia,” European Journal of Pharmacology, Vol. 521, No. 1-3, 2005, pp. 9-20.
http://dx.doi.org/10.1016/j.ejphar.2005.08.005
[50] I. Paur, T. R. Balstad, M. Kolberg, M. K. Pedersen, L. M. Austenaa, D. R. Jacobs amd R. Blomhoff, “Extract of Oregano? Coffe, Thyme, Clove, and Walnuts Inhibits NF-kappa B in Monocytes and in Transgenic Reporter Mice,” Cancer Prevention Research (Philadelphia), Vol. 3, No. 5, 2010, pp. 653-663.
[51] S. R. Bornstein, M. Yoshida-Hiroi, S. Sotiriou, M. Levine, H. G. Hartwig, R. L. Nussbaum and G. Eisenhofer, “Impaired Adrenal Catecholamine System Function in Mice with Deficiency of the Ascorbic Acid Transporter (SVCT2),” FASEB Journal, Vol. 17, No. 13, 2003, pp. 1928-1930.
[52] P. Patak, H. S. Willenberg and S. R. Bornstein, “Vitamin C Is an Important Cofactor for both Adrenal Cortex and Adrenal Medulla,” Endocrine Research, Vol. 30, No. 4, 2004, pp. 871-875.
http://dx.doi.org/10.1081/ERC-200044126
[53] T. Valachovicova, V. Slivova and D. Sliva, “Cellular and Physiological Effects of Soy Flavonoids,” Mini Review of Medicinal Chemistry, Vol. 4, No. 8, 2004, pp. 881-887.
http://dx.doi.org/10.2174/1389557043403387
[54] V. K. Singh, M. B. Grace, V. I. Parekh, M. H. Whitnall and M. R. Landauer, “Effects of Genistein Administration on Cytokine Induction in Whole-Body Gamma Irradiated Mice,” International Immunopharmacology, Vol. 9, No. 12, 2009, pp. 1401-1410.
[55] Y. Z. Fang, S. Yang and G. Wu, “Free Radicals, AntiOxidants, and Nutrition,” Nutrition, Vol. 18, No. 10, 2002, pp. 872-879.
http://dx.doi.org/10.1016/S0899-9007(02)00916-4
[56] K. J. Meyers, J. L. Rudolf and A. E. Mitchell, “Influence of Dietary Quercetin on Glutathione Redox Status in Mice,” Journal of Agricultural and Food Chemistry, Vol. 56, No. 3, 2008, pp. 830-836.
http://dx.doi.org/10.1021/jf072358l
[57] S. Pal, C. Saha and S. K. Dey, “Studies on Black Tea (Camellia sinensis) Extract as a Potential Antioxidant and a Probable Radioprotector,” Radiation and Environmental Biophysics, Vol. 52, No. 2, 2013, pp. 269-278.
http://dx.doi.org/10.1007/s00411-013-0463-z
[58] D. Ghosh, S. Pal, C. Saha, A. K. Chakrabarti, S. C. Datta and S. K. Dey, “Black Tea Extract: A Supplementary Antioxidant in Radiation-Induced Damage to DNA and Normal Lymphocytes,” Journal of Environmental Pathology, Toxicology and Oncology, Vol. 31, No. 2, 2012, pp. 155-166.
http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v31.i2.70
[59] B. Frei and J. V. Higdon, “Antioxidant Activity of Tea Polyphenols in Vivo: Evidence from Animal Studies,” The Journal of Nutrition, Vol. 133, No. 10, 2003, pp. 3275S3284S.
[60] K. Ullmann, A. M. Wiencierz, C. Müller, R. Thierbach, A. Steege, S. Toyokuni and P. Steinberg, “A High-Throughput Reporter Gene Assay to Prove the Ability of Natural Compounds to Modulate Glutathione Peroxidase, Superoxide Dismutase and Catalase Gene Promoters in V79 Cells,” Free Radical Research, Vol. 42, No. 8, 2008, pp. 746-753. http://dx.doi.org/10.1080/10715760802337273
[61] M. K. Chung, A. Y. Kang, K. M. Lee, E. Oh, H. J. Jun, S. Y. Kim, J. H. Auh, T. V. Moon, S. J. Lee and K. H. Park, “Water-Soluble Genistin Glycoside Isoflavones Up-Regulate Antioxidant Metallothionein Expression and Scavenge Free Radicals,” Journal of Agricultural and Food Chemistry, Vol. 54, No. 11, 2006, pp. 3819-3826.
http://dx.doi.org/10.1021/jf060510y
[62] X. Gao, B. Wang, X. Wei, K. Men, F. Zheng, Y. Zhou, Y. Zheng, M. Gou, M. Huang, G. Guo, N. Huang, Z. Qian and Y. Wei, “Anticancer Effect and Mechanism of Polymer Micelle-Encapsulated Quercetin on Ovarian Cancer,” Nanoscale, Vol. 4, No. 22, 2012, pp. 7021-7030.
http://dx.doi.org/10.1039/c2nr32181e
[63] A. K. Khaw, J. W. Yong, G. Kalthur and M. P. Hande, “Genistein Induces Growth Arrest and Suppresses Telomerase Activity in Brain Tumor Cells,” Genes, Chromosomes and Cancer, Vol. 51, No. 10, 2012, pp. 961-974.
http://dx.doi.org/10.1002/gcc.21979
[64] J. H. Lee, T. O. Khor, L. Shu, Z. Y. Su, F. Fuentes and A. N. Kong, “Dietary Phytochemicals and Cancer Prevention: Nrf2 Signaling, Epigenetics, and Cell Death Mechanisms in Blocking Cancer Initiation and Progression,” Pharmacology and Therapeutics, Vol. 137, No. 2, 2013, pp. 153-171.
[65] W. Vanden Berghe, N. Dijsselbloem, L. Vermeulen, M. N. Ndlovu, E. Boone and G. Haegeman, “Attenuation of Mitogenand Stress-Activated Protein Kinase-1-Driven Nuclear Factor-κB Gene Expression by Soy Isoflavones Does not Require Estrogenic Activity,” Cancer Research, Vol. 66, No. 9, 2006, pp. 4852-4862.
http://dx.doi.org/10.1158/0008-5472.CAN-05-2957
[66] A. Molteni, J. E. Moulder, E. P. Cohen, B. L. Fish, J. M. Taylor, P. A. Veno, L. F. Wolfe and W. F. Ward, “Prevention of Radiation-Induced Nephropathy and Fibrosis in a Model of Bone Marrow Transplant by an Angiotensin II Receptor Blocker,” Experimental Biology and Medicine (Maywood), Vol. 226, No. 11, 2001, pp. 1016-1023.
[67] M. Medhora, F. Gao, E. R. Jacobs and J. E. Moulder, “Radiation Damage to the Lung: Mitigation by AngiotensinConverting Enzyme (ACE) Inhibitors,” Respirology, Vol. 17, No. 1, 2012, pp. 66-71.
http://dx.doi.org/10.1111/j.1440-1843.2011.02092.x
[68] L. Kma, F. Gao, B. L. Fish, J. E. Moulder, E. R. Jacobs and M. Medhora, “Angiotensin Converting Enzyme Inhibitors Mitigate Collagen Synthesis Induced by a Single Dose of Radiation to the Whole Thorax,” Journal of Radiation Research, Vol. 53, No. 1, 2012, pp. 10-17.
http://dx.doi.org/10.1269/jrr.11035
[69] I. E. Sklobovskaia, L. P. Zhavoronkov and B. V. Dubovik, “Effect of the Inhibition of Prostaglandin Biosynthesis on the Hematopoietic Status of Irradiated Mice,” Radiobiologiia, Vol. 24, No. 1, 1984, pp. 56-59.
[70] M. V. Vasin, I. B. Ushakov, V. Kovtun, S. N. Komarova, L. A. Semenova and A. A. Galkin, “Comparative Effectiveness of Antioxidant Melatonin and Radioprotectors Indralin and Phenylephrine in Local Radiation Injuries,” Radiatsionnaia Biologiia, Radioecologiia, Vol. 44, No. 1, 2004, pp. 68-71.
[71] F. Sieber, S. A. Muir, E. P. Cohen, B. L. Fish, M. M?der, A. B. Schock, B. J. Althouse and J. E. Moulder, “Dietary Selenium for the Mitigation of Radiation Injury: Effects of Selenium Dose Escalation and Timing of Supplementation,” Radiation Research, Vol. 176, No. 3, 2011, pp. 366-374. http://dx.doi.org/10.1667/RR2456.1
[72] R. M. Day, T. A. Davis, M. Barshishat-Kupper, E. A. McCart, A. J. Tipton and M. R. Landauer, “Enhanced Hematopoietic Protection Fromradiation by the Combination of Genistein and Captopril,” Internatinal Immunopharmacology, Vol. 15, No. 2, 2013, pp. 348-356.
http://dx.doi.org/10.1016/j.intimp.2012.12.029
[73] S. Fujisawa and Y. Kadoma, “Antiand Pro-oxidant Effects of Oxidized Quercetin, Curcumin or Curcumin-Related Compounds with Thiols or Ascorbate as Measured by the Induction Period Method,” In Vivo, Vol. 20, No. 1, 2006, pp. 39-44.
[74] N. Miyoshi, K. Naniwa, T. Yamada, T. Osawa and Y. Nakamura, “Dietary Flavonoid Apigenin Is a Potential Inducer of Intracellular Oxidative Stress: The Role in the Interruptive Apoptotic Signal,” Archives of Biochemistry and Biophysics, Vol. 466, No. 2, 2007, pp. 274-282.
http://dx.doi.org/10.1016/j.abb.2007.07.026
[75] W. Zhao and M. E. Robbins, “Inflammation and Chronic Oxidative Stress in Radiation-Induced Late Normal Tissue Injury: Therapeutic Implications,” Current Medicinal Chemistry, Vol. 16, No. 2, 2009, pp. 130-143.
http://dx.doi.org/10.2174/092986709787002790
[76] K. Brusselmans, R. Vrolix, G. Verhoeven and J. V. Swinnen, “Induction of Cancer Cell Apoptosis by Flavonoids Is Associated with Their Ability to Inhibit Fatty Acid Synthase Activity,” Journal of Biological Chemistry, Vol. 280, No. 7, 2005, pp. 5636-5645.
[77] D. W. Lamson and M. S. Brignall, “Antioxidants and Cancer Therapy II: Quick Reference Guide,” Alternative Medicine Review: A Journal of Clinical Therapeutic, Vol. 5, No. 2, 2000, pp. 152-163.
[78] V. Izzi, L. Masuelli, I. Tresoldi, P. Sacchetti, A. Modesti, F. Galvano and R. Bei, “The Effects of Dietary Flavonoids on the Regulation of Redox Inflammatory Networks,” Frontiers in Bioscience (Landmark Ed), Vol. 17, No. 7, 2012, pp. 2396-2418. http://dx.doi.org/10.2741/4061

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.