Share This Article:

Development of methodology for quantitative landslide risk assessment—Example Göta river valley

Full-Text HTML Download Download as PDF (Size:1863KB) PP. 130-143
DOI: 10.4236/ns.2014.63018    5,141 Downloads   7,113 Views   Citations


Effective landslide risk management requires knowledge of the landslide risks. This paper presents a risk assessment methodology for semiregional scale. The landslide probability is assessed taking into account expected climatechange in the case study area (the G?ta river valley). Climate change is expected to result in increased erosion and water fluctuations. There are large areas with marine clays, often quick clay, in the area and the landslide process can be rapid with extensive damages and casualties. The consequence methodology includes a wide range of consequences assessed by monetary valuation. The consequences and the landslide probability are combined as pairs of values in a risk matrix and the risk is also presented on a map. The map has been used as discussion and decision bases in the municipalities in the G?ta river valley, in the county administration and on governmental level to estimate the needs of risk mitigation and to make priorities.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Andersson-Sköld, Y. , Falemo, S. and Tremblay, M. (2014) Development of methodology for quantitative landslide risk assessment—Example Göta river valley. Natural Science, 6, 130-143. doi: 10.4236/ns.2014.63018.


[1] IPCC (2007) Climate change 2007: Impacts, adaptation and vulnerability. Parry, M.L., Ed., Cambridge University Press, New York.
[2] Andréasson, J., Bergstram, S., Carlsson, B., Graham, P. and Lindstram, G. (2004) Hydrological change: Climate change impact simulations for Sweden. A Journal of the Human Environment, 33, 228234.
[3] Lawrence, D., Graham, L.P., den Besten, J., Andréasson, J., Bergstram, S. and Engen-Skaugen, T. (2012) Climate change impacts and uncertainties in flood risk management: Examples from the North Sea Region. A Report of Working Group 1, SAWA Interreg IVB Project, 2012, Report No. 05.
[4] Olsson, J., Yang, W., Graham, L.P., Rosberg, J. and Andréasson, J. (2011) Using an ensemble of climate projections for simulating recent and near-future hydrological change to Lake Vanern in Sweden. Tellus A, 63, 126-137.
[5] IPCC (2001) Climate change 2001: The scientific basis. contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K. and Johnson, C.A., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, 881.
[6] SOU 2007:60. Sweden facing climate change: Threats and opportunities. Final Report, Fritze, Stockholm
[7] Berke, P.R. (1998) Reducing natural hazard risks through state growth management. Journal of the American Planning Association, 64, 76-87.
[8] Dai, F.C., Lee, C.F. and Ngai, Y.Y. (2002) Landslide risk assessment and management: An overview. Engineering Geology, 64, 65-87.
[9] Srivastava, R. and Laurian, L. (2006) Natural hazard mitigation in local comprehensive plans: The case of flood, ildfire and drought planning in Arizona. Disaster Prevention and Management, 15, 461-483.
[10] Sterlacchini, S., Frigerio, P. and Giacomelli, M. (2007) Brambilla, landslide risk analysis: A multi-disciplinary methodological approach. Natural Hazards and Earth System Sciences, 7, 657-675.
[11] Friele, P., Jakob, M. and Clague, J. (2008) Hazard and risk from large landslides from Mount Meager volcano, British Columbia, Canada. Georisk, 2, 48-64.
[12] Holcombe, E. and Anderson, M. (2010) Tackling landslide risk: Helping land use policy to reflect unplanned housing realities in the Eastern Caribbean. Land Use Policy, 27, 798-800.
[13] Singh, A.K. (2010) Landslide management: Concept and philosophy. Disaster Prevention and Management, 19, 119-134.
[14] Brooks, N. (2003) Vulnerability, risk and adaptation: A conceptual framework, tyndall centre for climate change research. University of East Anglia, Norwich.
[15] Sarewitz, D., Pielke Jr., R. and Keykhah, M. (2003) Vulnerability and risk: Some thoughts from a political and policy perspective. Risk Analysis, 23, 805-810.
[16] Füssel, H.M. and Klein, R.J. (2006) Climate change vulnerability assessments: An evolution of conceptual thinking. Climate Change, 75, 301-329.
[17] Roberts, N.J., Nadim, F. and Kalsnes, B. (2009) Quantification of vulnerability to natural hazards. Georisk, 3, 164-173.
[18] King, D. (2008) Reducing hazard vulnerability through local government engagement and action. Natural Hazards, 47, 497-508.
[19] Anderson-Berry, L. and King, D. (2005) Mitigation of the impact of tropical cyclones in Northern Australia through ommunity capacity enhancement. Mitigation and Adaptation Strategies for Global Change, 10, 367-392.
[20] Remondo, J., González, A., Díaz de Terán, J.R., Cendrero, A., Fabbri, A. and Chung, C.J.F. (2003) Validationof landslide susceptibility maps; examples and applications from a case study in northern Spain. Natural Hazards, 30, 437-449.
[21] Uzielli, M. and Lacasse, S. (2007) Scenario-based probabilistic estimation of direct loss for geohazards. Georisk, 1, 142-154.
[22] Cassidy, M.J., Uzielli, M. and Lacasse, S. (2008) Probability risk assessment of landslides: A case study at Finneidfjord. Canadian Geotechnical Journal, 45, 12501267.
[23] Crovelli, R.A. and Coe, J.A. (2009) Probabilistic estimation of numbers and costs of future landslides in the San Francisco Bay region. Georisk, 3, 206-223.
[24] Ho, K.K.S. and Ko, F.W.Y. (2009) Application of quantified risk analysis in landslide risk management practice: Hong Kong experience. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 3, 134-146.
[25] Kanungo, D.P., Arora, M.K., Sarkar, S. and Gupta, R.P. (2009) A fuzzy set based approach for integration of thematic maps for landslide susceptibility zonation. Georisk, 3, 30-43.
[26] Rekacewicz, P. (2005) Vital Climate change graphics, UNEP/GRID-arendal maps and graphics library.
[27] Turner, B.L., Kasperson, R.E., Matsone, P.A., McCarthy, J.J., Corell, R.W., Christensen, L., Eckley, N., Kasperson, J.X., Luerse, A., Martello, M.L., Polsk, C., Pulsipher, A. and Schiller, A. (2003) A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences of the United States od America, 100, 8074-8079.
[28] Li, Z., Farrokh, N., Hongwei, H., Uzielli, M. and Lacasse, S. (2010) Quantitative vulnerability estimation for scenariobased landslide hazards. Landslides, 7, 125-134.
[29] Van Westen, C.J., Castellanos, E. and Kuriakose, S.L. (2008). Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology, 102, 112-131.
[30] Schuster, R.L. and Highland, L.M. (2007) The third hans cloos lecture. Urban landslides: Socioeconomic impacts and overview of mitigative strategies. Bulletin of Engineering Geology and the Environment, 66, 1-27.
[31] Anderson, M.G., Holcombe, E., Esquivel, M., Toro, J. and Ghesquiere, F. (2010) The efficacy of a programme of landslide risk reduction in areas of unplanned housing in the Eastern Caribbean. Environmental Management, 45, 807-821.
[32] Plate, E.J. (2007) Flood risk management for setting priorities in decision making, in Extreme Hydrological Events: New Concpepts for Security. In: Vasiliev, O.F., van Gelder, P.H.A.J.M., Plate, E.J. and Bolgov, M.V., Eds., Extreme Hydrological Events: New Concpepts for Security, 78, 21-44.
[33] Uzielli, M., Farrokh, N., Lacasse, S. and Kaynia, A.M. (2008) A conceptual framework for quantitative estimation of physical vulnerability to landslides. Engineering Geology, 102, 251-256.
[34] Hinkel, J., Nicholls, R.J., Vafeidis, A.T., Tol, R.S.J. and Avagianou, T. (2010) Assessing risk of and adaptation to sea-level rise in the European Union: An application of DIVA. Mitigation and Adaptation Strategies for Global Change, 15, 703-719.
[35] Zeng, J., Zhu, Z.Y., Zhang, J.L., Ouyang, T.P., Qiu, S.F., Zou, Y. and Zeng, T. (2012) Social vulnerability assessment of natural hazards on county-scale using high spatial resolution satellite imagery: A case study in the Luogang district of Guangzhou, South China. Environmental Earth Sciences, 65, 173-182.
[36] Holcombe, E., Smith, S., Wright, E. and Anderson, M.G. (2012) An integrated approach for evaluating the effectiveness of landslide risk reduction in unplanned communities in the Caribbean. Natural Hazards, 61, 351-385.
[37] Eder, S., Poscher, G. and Prager, C. (2006) Risk analyses and risk management—Slope instabilities in Alpine environments. ECI Geohazards Volume P07-Technical, Economical and Social Risk Evaluation.
[38] Andersson-Skald, Y., Bergman, R., Johansson, M., Persson, E. and Nyberg, L. (2013) Landslide risk management: A brief overview and example from Sweden of current situation and climate change. International Journal of Disaster Risk Reduction, 3, 44-61.
[39] Hultén, C., Andersson-Skald, Y., Ottosson, E., Edstam, T. and Johansson, A. (2007) Case studies of landslide risk due to climate change in Sweden. Proceedings of International Geotechnical Conference on Climate Change and Landslides, Ventnor, 21-24 May 2007, 149-157.
[40] Jonsson, A., Hjerpe, M., Andersson-Skald, Y., Glaas, E., André, K. and Simonsson, L. (2012) Cities’ capacity to manage climate vulnerability: Experiences from participatory vulnerability assessments in the lower Gata Alv Catchment, Sweden. Local Environment, 17, 735-750.
[41] GAU (2012) Skredrisker i Gata alvdalen i ett farandrat klimat. Swedish Geotechnical Institute, Slutrapport. Gata alvutredningen 2009-2011. )
[42] Andersson-Skald, Y., Torrance, J.K., Lind, B., Odén, K., Stevens, R.L. and Rankka, K. (2005) Quick clay: A case study of chemical perspective in Southwest Sweden. Engineering Geology, 82, 107-118.
[43] Sundborg, A. and Norrman, J. (1963) Gata alv—Hydrlologi och morfologi med sarskild hansyn till erosionprocesserna. Svergiges Geologiska Undersakning, SGU. Rapport Ca 43.
[44] Bergstram, S., Andréasson, J., Asp, M., Caldarulo, L., German, J., Lindahl, S., Losja, K. and Stensen, B. (2010) Fardjupad studie rarande aversvamningsriskerna far Vanern—Slutrapport. SMHI Rapport nr 2010-85.
[45] Bergstram, S., Andréasson, J., Losja, K., Stensen, B. and Wern, L. (2011) Hydrologiska och meteorologiska farhallanden i Gata alvdalen—Slutrapport. Statens geotekniska institut, SGI. Gata alvutredningen, GAU. Delrapport 27. Linkaping. Aven publicerad som SMHI Rapport nr 2010-81.
[46] Andersson-Skald, Y. and Falemo, S. (2013) Ex ante natural hazard consequence and vulnerability analysis for local to regional scale—Method development focusing on landslide events. Manuscript submitted Natural Hazards.
[47] Skredkommissionen (1995) Anvisningar far slantstabilitetsutredningar, ingenjarsvetenskapsakademien, IVA. Skredkommissionen. Rapport 3:95, Linkaping.
[48] Vagverket (2009) TK Geoar en teknisk beskrivning som anger Vagverkets och Banverkets krav och rad vid nybyggnad och farbattring av geokonstruktioner. Vagverket, VV. Publikation 2009:46/Banverket, BV. BVS 1585.001, Borlange.
[49] Rydell, B., Persson, H. and Blied, L. (2011) Klimateffekt pa vattenniva, erosion och grundvattenfarhallanden i Gata alv. Underlag till styrdokument 99ST003. Gata alvutredningen, GAU. Statens geotekniska institut, SGI. Varia 624:1, Linkaping.
[50] Fredén, C. (1984) Beskrivning till jordartskartan Vanersborg SO. Sveriges Geologiska Undersakning, Serie Ae nr 48.
[51] Fredén, C. (1986) Beskrivning till jordartskartan Gateborg NO. Sveriges Geologiska Undersakning, Serie Ae nr 40.
[52] Klingberg, F. (2011) Bottenfarhallanden i Gata alv. Statens geotekniska institut, SGI. Gata alvutredningen, GAU. Delrapport 6. Aven publicerad som SGU-rapport 2010:7, Linkaping.
[53] Klingberg, F., Passe, T. and Levander, J. (2006) Bottenfarhallanden och geologisk utveckling i Gata alv. Sveriges Geologiska Undersakning, SGU. Rapport K43, Uppsala.
[54] Hedvall, T. (2010) Bearbetning av Terrangmodell aver Gata och Nordre Alv. Vattenfall Power Consultant AB.
[55] Marin, M. (2011) Ytgeologisk undersakning med backscatter-analys far Gata alv och Nordre alv. arin Miljaanalys AB, U304-0909. Statens geotekniska institut, SGI. Gata alvutredningen, GAU. Delrapport 5 and Delrapport 34, Linkaping.
[56] Persson, H., Bengtsson, P.E., Lundstram, K. and Karlsson, P. (2011) Bedamning av grundvattenfarhallanden far slanter langs Gata alv. Allman vagledning. Statens geotekniska institut, SGI. Gata alvutredningen, GAU. Delrapport 7, Linkaping.
[57] Millet, D. (2011) River erosion, landslides and slope development in Gata river—A study based on athymetric data and general limit equilibrium slope stability analysis. Chalmers University of Technology. department of Civil and Environmental Engineering. GeoEngineering. Geology and Geotechnical Engineering. Master thesis 2011:131, Gateborg.
[58] Berggren, B., Alén, C., Bengtsson, P.E. and Falemo, S. (2011) Metodbeskrivning sannolikhet far skred: Kvantitativ berakningsmodell (Methodology for assessment of landslides probability: Quantitative model). Statens Geotekniska Institute, SGI. Report28, Linkaping.
[59] Janbu, N. (1954) Stability analysis of slopes with dimensionless parameters. Doctoral Thesis. Harvard University, Cambridge.
[60] Alén, C. (1998) On probability in geotechnic. Random calculation models exemplified on slope stability analysis and ground-superstructure interaction. Doctoral Thesis, Department of Geotechnical Engineering, Chalmers University of Technology, Gateborg.
[61] Alén, C., Bengtsson, P.E., Berggren, B., Johansson, L. and Johansson, A. (2000) Skredriskanalys i Gata alvdalenMetodbeskrivning (Landslide risk analysis in Gata rivermethodology). Statens Geotekniska Institut, SGI. Report 58, Linkaping.
[62] Maller, B. and Bergdahl, U. (1982) Estimation of the sensitivity of soft clays from static and weight sounding tests. Proceedings of the European Symposium on Penetration Testing, 2, ESPOT2, Amsterdam, 1, 291-295.
[63] Rankka, K., Andersson-Skald, Y., Hulten, C., Larsson, R., Leroux, V. and Dahlin, T. (2004) Quick clay in Sweden. Swedish Geotechnical Institute, Report 65, Linkaping.
[64] SCB (2003) Time for daily activities and living conditions (Tid far vardagsliv, Levnadsfarhallanden, in Swedish). Statistiska Centralbyran SCB 99.
[65] MSB (2011) National database of natural hazards, Swedish Civil Contingencies Agency. http:/
[66] NGU och NVE (2010) “Skrednett”. Norges vassdragsog energidirektorat.
[67] Berggren, B., Fallsvik, J., Hintze, S. and Stille, H. (1991) Lerslanters stabilitetsfarhallanden. Riskvardering och eslutsteori. Farslag till metod far riskvardering. Statens Geotekniska Institut, SGI. Varia 333, Linkaping.
[68] Blied, L. and Persson, H. (2011) Bedamd farandring av maximala grundvattennivaer i Gata [16] alvdalen till faljd av farandrat klimat. Statens Geotekniska Institut. SGI. Gata Alvutredningen, GAU. Delrapport 9, Linkaping.
[69] Kjellgren, S. (2013) Exploring local risk managers use of flood hazard maps for risk communication purposes in Baden-Württemberg. Natural Hazards & Earth System Sciences, 13, 1857-1872.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.