Share This Article:

The Principles of Starch Gelatinization and Retrogradation

Abstract Full-Text HTML XML Download Download as PDF (Size:754KB) PP. 280-291
DOI: 10.4236/fns.2014.53035    15,278 Downloads   22,926 Views   Citations

ABSTRACT

The polysaccharides, such as κ-carrageenan, ι-carrageenan, agarose (agar), gellan gum, amylose, curdlan, alginate, and deacetylated rhamsan gum, in water changed into an ice-like structure with hydrogen bonding between polymer and water molecules, and between water-water molecules even at a concentration range of 0.1% - 1.0% (W/V) at room temperature, resulting in gelation. Such dramatic changes from liquid into gels have been understood at the molecular level in principles. In this review, we describe the structure-function relationship of starch on the view point of rheological aspects and discuss gelatinization and retrogradation mechanism including water molecules at molecular level. The starch molecules (amylose and amylopectin) play a dominant role in the center of the tetrahedral cavities occupied by water molecules, and the arrangement is partially similar to a tetrahedral structure in a gelatinization process. The arrangement should lead to a cooperative effect stabilizing extended regions of ice-like water with hydrogen bonding on the surface of the polymer molecules, where hemiacetal oxygen and hydroxyl groups might participate in hydrogen bonding with water molecules. Thus, a more extended ice-like hydrogen bonding within water molecules might be achieved in a retrogradation process. Though many investigations not only include starch gelatinization and retrogradaion, but also the gelling properties of the polysaccharides have been undertaken to elucidate the structure-function relationship, no other researchers have established mechanism at the molecular level. There is reasonable consistency in our investigations.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Tako, Y. Tamaki, T. Teruya and Y. Takeda, "The Principles of Starch Gelatinization and Retrogradation," Food and Nutrition Sciences, Vol. 5 No. 3, 2014, pp. 280-291. doi: 10.4236/fns.2014.53035.

References

[1] M. Tako and S. Nakamura, “Indicative Evidence for a Conformational Transition in κ-Carrageenan from Studies of Viscosity-Shear Rate Dependence,” Carbohydrate Research, Vol. 155, No. 1, 1986, pp. 200-205.
http://dx.doi.org/10.1016/S0008-6215(00)90146-0
[2] M. Tako and S. Nakamura, “Synergistic Interaction between κ-Carrageenan and Locust Bean Gum in Aqueous Media,” Agricultural and Biological Chemistry, Vol. 50, No. 11, 1986, pp. 2817-2822.
http://dx.doi.org/10.1271/bbb1961.50.2817
[3] M. Tako, S. Nakamura and Y. Kohda, “Indicative Evidence for a Conformational Transition in ι-Carrageenan,” Carbohydrate Research, Vol. 161, No. 2, 1987, pp. 247253.
http://dx.doi.org/10.1016/S0008-6215(00)90081-8
[4] M. Tako and S. Nakamura, “Gelation Mechanism of Agarose,” Carbohydrate Research, Vol. 180, No. 2, 1988, pp. 277-284.
http://dx.doi.org/10.1016/0008-6215(88)80084-3
[5] M. Tako, A. Sakae and S. Nakamura, “Rheological Properties of Gellan Gum in Aqueous Media,” Agricultural Biological Chemistry, Vol. 53, No. 3, 1989, pp. 771-776.
http://dx.doi.org/10.1271/bbb1961.53.771
[6] M. Tako and S. Hizukuri, “Evidence for Conformational Transition in Amylose,” Journal of Carbohydrate Chemistry, Vol. 14, No. 4-5, 1995, pp. 613-622.
http://dx.doi.org/10.1080/07328309508005362
[7] Y. Tamaki, T. Konishi and M. Tako, “Gelation and Retrogradation Mechanism of Wheat Amylose,” Materials, Vol. 4, No. 10, 2011, pp. 1763-1775.
http://dx.doi.org/10.3390/ma4101763
[8] M. Tako and I. Hanashiro, “Evidence for a Conformational Transition in Curdlan,” Polymer Gels & Networks, Vol. 5, No. 2, 1997, pp. 241-250.
http://dx.doi.org/10.1016/S0966-7822(96)00036-6
[9] M. Tako and Y. Kohda, “Calcium Induced Association Characteristics of Alginate,” Journal of Applied Glycoscience, Vol. 44, No. 2, 1997, pp. 153-159.
[10] M. Tako, S. Tohma, T. Taira and M. Ishihara, “Gelation Mechanism of Deacetylated Rhamsan Gum,” Carbohydrate Polymers, Vol. 54, No. 3, 2003, pp. 279-285.
http://dx.doi.org/10.1016/S0144-8617(03)00029-8
[11] M. Tako, T. Teruya, Y. Tamaki and T. Konishi, “Molecular Origin for Rheological Characteristics of Native Gellan Gum,” Colloid and Polymer Science, Vol. 287, No. 12, 2009, pp. 1445-1454.
http://dx.doi.org/10.1007/s00396-009-2112-2
[12] M. Tako and M. Kiriaki, “Rheological Properties of Welan Gum in Aqueous Medi,” Agricultural Biological Chemistry, Vol. 54, No. 12, 1990, pp. 3079-3084.
http://dx.doi.org/10.1271/bbb1961.54.3079
[13] M. Tako, “Molecular Origin for the Thermal Stability of Welan and Rhamsan Gum,” In: M. Yalpani, Ed., Carbohydrate and Carbohydrate Polymers, ATL Press, Inc. Science and Publishers, Mount Prospect, 1993, pp. 205215.
[14] M. Tako, “Molecular Origin for Thermal Stability of Rhamsan Gum in Aqueous Media,” Bioscience, Biotechnology, and Biochemistry, Vol. 57, No. 7, 1993, pp. 11821184.
http://dx.doi.org/10.1271/bbb.57.1182
[15] M. Tako, “Molecular Origin for Thermal Stability of S-657 Gum Produced by Xanthomonas ATCC53159,” Polymer Gels & Networks, Vol. 2, No. 2, 1994, pp. 91104.
http://dx.doi.org/10.1016/0966-7822(94)90029-9
[16] M. Tako and H. Tamaki, “Molecular Origin for Thermal Stability of S-88 Gum Produced by Pseudomonas ATCC31554,” Polymer Journal, Vol. 37, No. 7, 2005, pp. 498-505.
http://dx.doi.org/10.1295/polymj.37.498
[17] M, Tako, “Molecular Origin for Thermal Stability of Schizophyllan,” Polymer Gels & Networks, Vo. 4, No. 4, 1996, pp. 303-313.
http://dx.doi.org/10.1016/0966-7822(96)00016-0
[18] M. Tako, “Structural Principle of Polysaccharide Gels,” Journal of Applied Glycoscience, Vol. 47, No. 1, 2000, pp. 49-53. http://dx.doi.org/10.5458/jag.47.49
[19] M. Tako, T. Nagahama and D. Nomura,” Non-Newtonian Behavior and Dynamic Viscoelasticity of Xanthan Gum,” Nippon Nogeikagaku Kaishi, Vol. 51, No. 8, 1977, pp. 513-517.
http://dx.doi.org/10.1271/nogeikagaku1924.51.8_513
[20] P.-E. Jansson, L. Kenne and B. Lindberg, “Structure of the Extracellular Polysaccharide from Xanthomonas campestris,” Carbohydrate Research, Vol. 45, No. 1, 1975, pp. 275-282.
http://dx.doi.org/10.1016/S0008-6215(00)85885-1
[21] M. Tako and S. Nakamura, “Rheological Properties of Deacetylated Xantham Gum in Aqueous Media,” Agricultural Biological Chemistry, Vol. 48, No. 12, 1984, pp. 2987-2993.
http://dx.doi.org/10.1271/bbb1961.48.2987
[22] M. Tako and S. Nakamura, “Rheological Properties of Ca salt of Xanthan Gum in Aqueous Media,” Agricultural Biological Chemistry, Vol. 51, No. 11, 1987, pp. 29192923.
http://dx.doi.org/10.1271/bbb1961.51.2919
[23] M. Tako and S. Nakamura, “Rheological Properties of Depyruvated Xanthan Gum in Aqueous Media,” Agricultural Biological Chemistry, Vol. 52, No. 6, 1988, pp. 1585-1586.
[24] M. Tako and S. Nakamura, “Evidence for Intramolecular Associations in Xanthan Molecules in Aqueous Media,” Agricultural Biological Chemistry, Vol. 53, No. 7, 1989, pp. 1941-1946.
http://dx.doi.org/10.1271/bbb1961.53.1941
[25] M. Tako, “Molecular Origin for Rheological Characteristics of Xanthan Gum,” ACS Symposium Series, Vol. 489, 1992, pp. 268-281.
http://dx.doi.org/10.1021/bk-1992-0489.ch017
[26] M. Tako, A. Asato and S. Nakamura, “Rheological Aspects of Intermolecular Interaction between Xanthan and Locust Bean Gum in Aqueous Media,” Agricultural Biological Chemistry, Vol. 48, No. 12, 1984, pp. 2995-3000.
http://dx.doi.org/10.1271/bbb1961.48.2995
[27] M. Tako and S. Nakamura, “Synergistic Interaction between Xanthan and d-Galacto-d-Mannan,” FEBS Letters, Vol. 204, No. 1, 1986, pp. 33-36.
http://dx.doi.org/10.1016/0014-5793(86)81382-5
[28] M. Tako, “Synergistic Interaction between Deacylated Xanthan and Galactomannan,” Journal of Carbohydrate Chemistry, Vol. 10, No. 4, 1991, pp. 619-633.
http://dx.doi.org/10.1080/07328309108543936
[29] M. Tako and S. Nakamura, “Synergistic Interaction between Xanthan and Guar Gum,” Carbohydrate Research, Vol. 138, No. 1, 1985, pp. 207-213.
http://dx.doi.org/10.1016/0008-6215(85)85104-1
[30] M. Tako, “Synergistic Interaction between Xanthan and Tara-Bean Gum,” Carbohydrate Polymers, Vol. 16, No. 3, 1991, pp. 227-239.
http://dx.doi.org/10.1016/0144-8617(91)90111-O
[31] P. Pakdee, M. Tako, T. Yokohari, K. Kinjyo, F. Hongo and S. Yaga, “Synergistic Interaction between Xanthan and Galactomannan Isolated from Leucaena leucocephala de Wit,” Journal of Applied Glycoscience, Vol. 42, No. 2, 1995, pp. 105-113.
[32] M. Tako, T. Teruya, Y. Tamaki and K. Okawa, “CoGelation Mechanism of Xanthan and Galactomannan,” Colloid and Polymer Science, Vol. 288, No. 10-11, 2010, pp. 1161-1166.
http://dx.doi.org/10.1007/s00396-010-2242-6
[33] M. Tako, “Synergistic Interaction between Xanthan and Konjac Glucomannan in Aqueous Media,” Bioscience, Biotechnology, and Biochemistry, Vol. 56, No. 8, 1992, pp. 1188-1192.
http://dx.doi.org/10.1271/bbb.56.1188
[34] M. Tako, “Binding Sites for d-Mannose-Specific Interaction between Xanthan and Galactomannan, and Glucomannan,” Colloids and Surfaces B: Biointerfaces, Vol. 1, No. 2, 1993, pp. 125-131.
http://dx.doi.org/10.1016/0927-7765(93)80043-X
[35] A. Gamini, R., Toffanin, E. Murano and R. Rizzo, “Hydrogen Bonding and Conformation of Agarose in Methyl Sulfoxide and Aqueous Solutions Investigated by 1H and 13C NMR Spectroscopy,” Carbohydrate Research, Vol. 304, No. 3-4, 1997, pp. 293-302.
http://dx.doi.org/10.1016/S0008-6215(97)00232-2
[36] Y. Takeda, S. Tomooka and S. Hizukuri, “Structure of Branched and Linear Molecules of Amylose,” Carbohydrate Research, Vol. 246, No. 1, 1993, pp. 267-272.
http://dx.doi.org/10.1016/0008-6215(93)84038-8
[37] S. Perez and C. Vergelati, “Solid State and Solution Features of Amylose and Amylose Fragments,” Polymer Bulletin, Vol. 17, No. 2, 1987, pp. 141-148.
http://dx.doi.org/10.1007/BF00256880
[38] J. Nikuni, “Starch and Cookery,” Chyouri Kagaku, Vol. 2, No. 1, 1969, pp. 6-10.
[39] D. French,” Fine Structure and Relationship to the Organization of Starch Granules,” Journal of Japanese Society of Starch Science, Vol. 19, No. 1, 1972, pp. 8-25.
http://dx.doi.org/10.5458/jag1972.19.8
[40] S. Hizukuri, “Polymodal Distribution of the Chain Length of Amylopectin, and Its Significant,” Carbohydrate Research, Vol. 147, No. 2, 1986, pp. 342-347.
http://dx.doi.org/10.1016/S0008-6215(00)90643-8
[41] M. Tako, “Molecular Origin for Thermal Stability of Waxy Rice Starch,” Staerke/Starch, Vol. 48, 1999, pp. 414-417.
[42] M. Tako and S. Hizukuri, “Molecular Origin for the Thermal Stability of Rice Amylopectin,” Journal of Carbohydrate Chemistry, Vol. 16, No. 4-5, 1997, pp. 655-666.
http://dx.doi.org/10.1080/07328309708007343
[43] M. Tako and S. Hizukuri, “Molecular Origin for Thermal Stability of Koshihikari Rice Amylopectin,” Food Research International, Vol. 33, No. 1, 2000, pp. 35-40.
http://dx.doi.org/10.1016/S0963-9969(00)00021-1
[44] M. Tako and S. Hizukuri, “Rheological Properties of Wheat (Halberd) Amylopectin,” Staerke/Starch, Vol. 55, No. 8, 2003, pp. 345-349.
[45] M. Tako, I. Hanashiro and S. Uechi, “Rheological Properties of Wheat Amylopectin,” Science of Bulletin of Faculty of Agriculture, University of the Ryukyus, No. 51, 2004, pp. 139-143.
[46] K. Shibanuma, Y. Takeda and S. Hizukuri, “Molecular Structure of Some Wheat Starches,” Carbohydrate Polymers, Vol. 25, No. 2, 1994, pp. 111-116.
http://dx.doi.org/10.1016/0144-8617(94)90146-5
[47] K. Shibanuma, Y. Takeda and S. Hizukuri, “Molecular and Pasting Properties of Some Wheat Starches,” Carbohydrate Polymers, Vol. 29, No. 3, 1996, pp. 253-261.
http://dx.doi.org/10.1016/0144-8617(96)00026-4
[48] M. Tako and S. Hizukuri, “Gelatinization Mechanism of Rice Starch,” Journal of Carbohydrate Chemistry, Vol. 18, No. 5, 1999, pp. 573-584.
http://dx.doi.org/10.1080/07328309908544020
[49] M. Tako, “Gelatinization Characteristics of Rice Starch,” Journal of Applied Glycoscience, Vol. 47, No. 2, 2000, pp. 187-192. http://dx.doi.org/10.5458/jag.47.187
[50] M. Tako and S. Hizukuri, “Gelatinization Mechanism of Potato Starch,” Carbohydrate Polymers, Vol. 48, No. 4, 2003, pp. 397-401.
http://dx.doi.org/10.1016/S0144-8617(01)00287-9
[51] M. Tako, Y. Tamaki, T. Konishi, K. Shibanuma, I. Hanashiro and Y. Takeda,” Gelatinization and Retrogradation Characteristics of Wheat (Rosella) Starch,” Food Research International, Vol. 41, No. 8, 2008, pp. 797-802.
http://dx.doi.org/10.1016/j.foodres.2008.07.002
[52] M. Tako, Y. Tamaki, T. Teruya, T. Konishi, K. Shibanuma, I. Hanashiro and Y. Takeda, “Gelatinization Characteristics of Halberd Wheat Starch,” Staerke/Starch, Vol. 61, No. 5, 2009, pp. 275-281.
[53] M. Tako and S. Hizukuri, “Retrogradation Mechanism of Rice Starch,” Cereal Chemistry, Vol. 77, No. 4, 2000, pp. 473-477.
http://dx.doi.org/10.1094/CCHEM.2000.77.4.473
[54] A. Sarko, J. Southwick and J. Hayashi, “Packing Analysis of Carbohydrates and Polysaccharides. 7. Crystal Structure of Cellulose III and Its Relationship to Other Cellulose Polymorphs,” Macromolecules, Vol. 9, No. 5, 1976, pp. 857-863. http://dx.doi.org/10.1021/ma60053a028
[55] Z. M. Ford, E. D. Stevens, G. P. Johnson and A. D. French, “Determining the Crystal Structure of Cellulose III by Modeling,” Carbohydrate Research, Vol. 340, No. 5, 2005, pp. 827-833.
http://dx.doi.org/10.1016/j.carres.2005.01.028

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.