[1]
|
Vauterin, L., Hoste, B., Kersters, K. and Swings, J. (1995) Reclassification of Xanthomonas. International Journal of Systematic and Evolutionary Microbiology, 45, 472-489. http://dx.doi.org/10.1099/00207713-45-3-472
|
[2]
|
OEPP/EPPO (2006) EPPO Standard PM 7/64 Xanthomonas arboricola pv. pruni. OEPP/EPPO Bulletin, 36, 129-133.
|
[3]
|
Marco, G.M. and Stall, R.E. (1983) Control of bacterial spot of pepper initiated by strains of Xanthomonas campestris pv. vesicatoria that differ in sensibility to copper. Plant Disease, 67, 779-781. http://dx.doi.org/10.1094/PD-67-779
|
[4]
|
MacManus, P.S., Stockwell, V.O., Sundin, G.W. and Jones, A.L. (2002) Antibiotic use in plant agriculture. Annual Review of Phytopathology, 40, 443-465. http://dx.doi.org/10.1146/annurev.phyto.40.120301.093927
|
[5]
|
Pagani, C., Silvera, E., Wallasek, W. and Solares, E. (1998) Advances in the identification at the moment on the major susceptibility of the fruit infection of peach tree. Technical Meeting about Fruit Trees Protection, National Research Institute of Agronomy, Uruguay, 37.
|
[6]
|
Chu, G.X., Wakelin, S.A., Condron, L. and Stewart, A. (2010) Effect of soil copper on the response of soil fungal communities to the addition of plant residues. Pedobiologia, 53, 353-359. http://dx.doi.org/10.1016/j.pedobi.2010.04.002
|
[7]
|
Shoda, M. (2000) Bacterial Control of Plant Diseases. Journal of Bioscience and Bioengineering, 89, 515-521. http://dx.doi.org/10.1016/S1389-1723(00)80049-3
|
[8]
|
Lugtenberg, B. and Kamilova, F. (2009) Plant-growthpromoting rhizobacteria. Annual Review of Microbiology, 63, 541-556. http://dx.doi.org/10.1146/annurev.micro.62.081307.162918
|
[9]
|
Stockwell, V.O. and Stack, J.P. (2007) Using Pseudomonas spp. for integrated biological control. Phytopathology, 97, 244-249. http://dx.doi.org/10.1094/PHYTO-97-2-0244
|
[10]
|
Gardener, B.B.M. (2007) Diversity and Ecology of Biocontrol Pseudomonas spp. in agricultural systems. Phytopathology, 97, 221-226. http://dx.doi.org/10.1094/PHYTO-97-2-0221
|
[11]
|
Battu, P.R. and Reddy M.S. (2009) Isolation of secondary metabolites from Pseudomonas fluorescens and its characterization. Asian Journal of Research in Chemistry, 2, 26-29.
|
[12]
|
Rampazo, L.G.L. (2004) Evaluation of biological agents and their products on the incidence of canker citrus lesions on leaves. Londrina, Brasil, p. 67, (M.Sc. Dissertation. Departamento de Microbiologia. UEL. http://capesdw.capes.gov.br/capesdw/resumo.html?idtese=20046440002012016P3
|
[13]
|
Oliveira, A.G., Murate, L.S., Spago, F.R., Lopes, L.P., Beranger, J.P.O., San Martin, J.A.B., Nogueira, M.A., Andrade, C.G.T.J, Mello, J.C.P. and Andrade, G. (2011) Evaluation of the antibiotic activity of extracellular compounds produced by the Pseudomonas strain against the Xanthomonas citri pv. citri 306 strain. Biological Control, 56, 125-131. http://dx.doi.org/10.1016/j.biocontrol.2010.10.008
|
[14]
|
Haas, D. and Défago, G. (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology, 3, 307-319. http://dx.doi.org/10.1038/nrmicro1129
|
[15]
|
Graham, J.H. Gottwald, T.R. Cubero, J. and Achor, D.S. (2004) Xanthomonas axonopodis pv. citri: Factors a Vecting successful eradication of citrus canker. Molecular Plant Pathology, 5, 1-15. http://dx.doi.org/10.1046/j.1364-3703.2004.00197.x
|
[16]
|
Mercado-Blanco, J. and Bakker, P.A.H.M. (2007) Interactions between plants and beneficial Pseudomonas spp. exploiting bacterial traits for crop protection. Antonie van Leeuwenhoek, 92, pp. 367-389. http://dx.doi.org/10.1007/s10482-007-9167-1
|
[17]
|
Xie, G., Soad, A., Swings, J. and Mew, T.W. (2003) Diversity of Gram negative bacteria antagonistic against major pathogens of rice from rice seed in the tropic environment. Journal of Zhejiang University SCIENCE, 4, 463-468. http://dx.doi.org/10.1631/jzus.2003.0463
|
[18]
|
Rimando, A.M. and Duke, S.O. (2003) Natural products for pest management. Pest Management Science, 59, 708-717.
|