Share This Article:

Ratio of Capacitance/BMI Reflects Deficit in Nutritional Concentration While CH2 Reflects Total Nutritional Deficit in CAPD Patients and General Population

Full-Text HTML Download Download as PDF (Size:232KB) PP. 194-204
DOI: 10.4236/ojneph.2013.34034    2,494 Downloads   4,027 Views  

ABSTRACT

Traditionally phase angle was the best predictor in BIA for nutrition and survival in dialysis population. We recently showed that normalized bioimpedance indices are a better risk discriminator for dialysis patients and the general popu-lation. We hereby aimed to explore discriminating factors behind them. Methods: We assessed the body capacitive index (BCI = Capacitance × Height2/Weight); body resistive index (BRI = Resistance × Weight/Height2); and also, CH2 (= Capacitance × Height2) which represents total body capacitive volume in physics. We initially performed BIA for 206 female, 116 male healthy volunteers, followed by, prospective study for 128 CAPD patients (47 diabetes mellitus (DM), 81 non-DM; 59 male, 69 female) for >2 years. Results: Moderately good negative correlation of albumin and BCI (r = -0.533, p < 0.001) with linear regression (BCI = 8.780 - 0.184 × [albumin], R2 = 0.339, p < 0.001) was shown in CAPD patients. BCI and CH2 were much higher in CAPD patients in comparison to healthy volunteers (3.4 ± 0.1 vs 2.0 ± 0.0 nFm2/kg, p < 0.001 and 203 ± 8 vs 125 ± 1 nFm2, p < 0.001, respectively). In age and gender adjusted logistic regression model of 128 CAPD patients versus 322 healthy volunteers, the best risk discriminator was BCI (X2 = 165.6), followed by CH2 (X2 = 140), phase angle (X2 = 59.3) and BRI (X2 = 52.2). Thirty five (27.3%) patients died during the study period (Fatal cause: infection (54%), cardiovascular (26%)). In Cox regression, CH2 ( X24 = 32.4) was the best predictor for all-cause mortality, followed by BCI (X24 = 27.7) and phase angle ( X24 = 19.3). Conclusion: The phase angle was a compound parameter of the body capacity index (BCI) and body resistive index (BRI). BCI has a mod-erately good negative correlation with albumin and this supports its role in reflecting the severity of malnutrition in CAPD patients. CH2 represents total nutrition deficit and thus the major risk indicator for the survival of CAPD pa-tients.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

K. Koh and H. Wong, "Ratio of Capacitance/BMI Reflects Deficit in Nutritional Concentration While CH2 Reflects Total Nutritional Deficit in CAPD Patients and General Population," Open Journal of Nephrology, Vol. 3 No. 4, 2013, pp. 194-204. doi: 10.4236/ojneph.2013.34034.

References

[1] L. T. Cheng, W. Tang and T. Wang, “Strong Association between Volume Status and Nutritional Status in Peritoneal Dialysis Patients,” American Journal of Kidney Diseases, Vol. 45, No. 5, 2005, pp. 891-902.
http://dx.doi.org/10.1053/j.ajkd.2005.01.037
[2] A. Picolli, “Bioelectric Impedance Vector Distribution in Peritoneal Dialysis Patients with Different Hydration Status,” Kidney International, Vol. 65, No. 3, 2004, pp. 1050-1063.
http://dx.doi.org/10.1111/j.1523-1755.2004.00467.x
[3] F. Zhu, G. Wystrychowski, T. Kitzler, S. Thijssen, P. Kotanko and N. W. Levin. “Application of Bioimpedance Techniques to Peritoneal Dialysis,” Contributions to Nephrology, Vol. 150, 2006, pp. 119-128.
http://dx.doi.org/10.1159/000093511
[4] G. A. Young, J. D. Kopple and B. Lindholm, “Nutritional Assessment of Continuous Ambulatory Peritoneal Dialysis Patients: An international Study,” American Journal of Kidney Diseases, Vol. 17, No. 4, 1991, pp. 462-471.
[5] U. G. Kyle, I. Bosaeus, A. D. De Lorenzo, P. Deurenberg, M. Elia, J. M. Gómez, B. L. Heitmann, L. Kent-Smith, J. C. Melchior, M. Pirlich, H. Scharfetter, A. M. Schols and C. Pichard, “Composition of the ESPEN Working Group. Bioelectrical Impedance Analysis, Part I: Review of Principles and Methods,” Clinical Nutrition, Vol. 23, No. 5, 2004, pp. 1226-1243.
http://dx.doi.org/10.1016/j.clnu.2004.06.004
[6] U. G. Kyle, I. Bosaeus, A. D. De Lorenzo, P. Deurenberg, M. Elia, J. M. Gómez, B. L. Heitmann, L. Kent-Smith, J.-C. Melchior, M. Pirlich, H. Scharfetter, A. M. W. J. Schols and C. Pichard, “Bioelectrical Impedance Analysis—Part II: Utilization in Clinical Practice,” Clinical Nutrition, Vol. 23, No. 6, 2004, pp. 1430-1453.
http://dx.doi.org/10.1016/j.clnu.2004.09.012
[7] A. Bosy-Westphal, S. Danielzik, R. P. Dörhöfer, A. Piccoli and M. J. Muller, “Patterns of Bioelectrical Impedance Vector Distribution by Body Mass Index and Age: Implications for Body-Composition Analysis,” The American Journal of Clinical Nutrition, Vol. 82, No. 1, 2005, pp. 60-68.
[8] R. F. Kushner, D. A. Schoeller, C. R. Fjeld and L. Danford, “Is the Impedance Index (ht2/R) Significant in Predicting Total Body Water?” The American Journal of Clinical Nutrition, Vol. 56, No. 5, 1992, pp. 835-839.
[9] H. C. Lukaski, P. E. Johnson, W. W. Bolonchuk, G. I. Lykken, “Assessment of Fat-Free Mass Using Bioelectrical Impedance Measurements of the Human Body,” The American Journal of Clinical Nutrition, Vol. 41, No. 4, 1985, pp. 810-817.
[10] K. H. Koh, H. S. Wong, K. W. Go and Z. Morad, “Normalized Bioimpedance Indices Are Better Predictors of Outcome in Peritoneal Dialysis Patients,” Peritoneal Dialysis International, Vol. 31, No. 5, 2011, pp. 574-582.
http://dx.doi.org/10.3747/pdi.2009.00140
[11] M. Dittmar, “Reliability and Variability of Bioimpedance Measures in Normal Adults: Effects of Age, Gender, and Body Mass,” American Journal of Physical Anthropology, Vol. 122, No. 4, 2003, pp. 361-370.
http://dx.doi.org/10.1002/ajpa.10301
[12] M. Arroyo, A. M. Rocandio, L. Ansotegui, H. Herrera, I. Salces and E. Rebato, “Comparison of Predicted Body Fat Percentage from Anthropometric Methods and from Impedance in University Students,” British Journal of Nutrition, Vol. 92, No. 5, 2004, pp. 827-832.
http://dx.doi.org/10.1079/BJN20041273
[13] P. A. Fein, G. Gundumalla, A. Jorden, B. Matza, J. Chattopadhyay and M. M. Avram, “Usefulness of Bioelectrical Impedance Analysis in Monitoring Nutrition Status and Survival of Peritoneal Dialysis Patients,” Advances in Peritoneal Dialysis, Vol. 18, 2002, pp. 195-199.
[14] D. P. Kotler, S. Burastero, J. Wang and R. N. Pierson Jr., “Prediction of Body Cell Mass, Fat-Free Mass, and Total Body Water with Bioelectrical Impedance Analysis: Effects of Race, Sex, and Disease,” American Journal of Physical Anthropology, Vol. 64, Suppl. 3, 1996, pp. S489-S497.
[15] “Declaration of Helsinki,” Bulletin of the Pan American Health Organization, Vol. 24, 1990, pp. 606-609.
[16] C. H. Jones, L. Wells, J. Stoves, F. Farquhar and G. Woodrow, “Can a Reduction in Extracellular Fluid Volume Result in Increased Serum Albumin in Peritoneal Dialysis Patients?” American Journal of Kidney Diseases, Vol. 39, No.4, 2002, pp. 872-875.
http://dx.doi.org/10.1053/ajkd.2002.32010
[17] D. G. Struijk, R. T. Krediet, G. C. Koomen, E. W. Boeschoten and L. Arisz, “The Effect of Serum Albumin at the Start of Continuous Ambulatory Peritoneal Dialysis Treatment on Patient Survival,” Peritoneal Dialysis International, Vol. 14, No. 2, 1994, pp. 121-126.
[18] N. W. Levin, F. Zhu, E. Seibert, C. Ronco and M. K. Kuhlmann, “Use of Segmental Multifrequency Bioimpedance Spectroscopy in Hemodialysis,” Contributions to Nephrology, 2005, Vol. 149, 2005, pp. 162-167.
http://dx.doi.org/10.1159/000085482
[19] P. L. Cox-Reijven, J. P. Kooman, P. B. Soeters, F. M. Van der Sande and K. M. Leunissen, “Role of Bioimpedance Spectroscopy in Assessment of Body Water Compartments in Hemodialysis Patients,” American Journal of Kidney Diseases, Vol. 38, No. 4, 2001, pp. 832-838. http://dx.doi.org/10.1053/ajkd.2001.27703
[20] A. E. Jabara and R. L. Mehta, “Determination of Fluid Shifts during Chronic Hemodialysis Using Bioimpedance Spectroscopy and an In-Line Hematocrit Monitor,” ASAIO Journal, Vol. 41, No. 3, 1997, pp. M682-M687.
http://dx.doi.org/10.1097/00002480-199507000-00098
[21] R. Mushnick, P. A. Fein, N. Mittman, N. Goel, J. Chattopadhyay and M. M. Avram, “Relationship of Bioelectrical Impedance Parameters to Nutrition and Survival in Peritoneal Dialysis Patients,” Kidney International, Vol. 64, Suppl. 87, 2003, pp. S53-S56.
http://dx.doi.org/10.1046/j.1523-1755.64.s87.22.x
[22] M. C. Barbosa-Silva, A. J. Barros, J. Wang, S. B. Heymsfield and R. N. Pierson Jr., “Bioelectrical Impedance Analysis: Population Reference Values for Phase Angle by Age and Sex,” The American Journal of Clinical Nutrition, Vol. 82, No. 1, 2005, pp. 49-52.
[23] K. Kalantar-Zadeh, T. A. Ikizler, G. Block, M. M. Avram and J. D. Kopple, “Malnutrition-Inflammation Complex Syndrome in Dialysis Patients: Causes and Consequences,” American Journal of Kidney Diseases, Vol. 42, No. 5, 2003, pp. 864-881.
http://dx.doi.org/10.1016/j.ajkd.2003.07.016
[24] G. M. Chertow, J. M. Lazarus, N. L. Lew, L. Ma and E. G. Lowrie, “Bioimpedance Norms for the Hemodialysis Population,” Kidney International, Vol. 52, No. 6, 1997, pp. 1617-1621. http://dx.doi.org/10.1038/ki.1997.493
[25] M. K. Kuhlmann, F. Zhu, E. Seibert and N. W. Levin, “Bioimpedance, Dry Weight and Blood Pressure Control: New Methods and Consequences,” Current Opinion in Nephrology & Hypertension, Vol. 14, No. 6, 2005, pp. 543-549.
http://dx.doi.org/10.1097/01.mnh.0000185983.48319.00
[26] A. Piccoli, G. Pastori, M. Guizzo, M. Rebeschini, A. Naso and C. Cascone, “Equivalence of Information from Single versus Multiple Frequency Bioimpedance Vector Analysis in Hemodialysis,” Kidney International, Vol. 67, No. 1, 2005, pp. 301-313.
http://dx.doi.org/10.1111/j.1523-1755.2005.00083.x
[27] R. N. Baumgartner, W. C. Chumlea and A. F. Roche, “Bioelectric Impedance Phase Angle and Body Composition,” The American Journal of Clinical Nutrition, Vol. 48, No. 1, 1998, pp. 16-23.
[28] G. M. Chertow, D. O. Jacobs, J. M. Lazarus, N. L. Lew and E. G. Lowrie, “Phase Angle Predicts Survival in Hemodialysis Patients,” Journal of Renal Nutrition, Vol. 7, No. 4, 1997, pp. 204-207.
http://dx.doi.org/10.1016/S1051-2276(97)90020-0
[29] M. Ott, H. Fischer, H. Polat, E. B. Helm, M. Frenz, W. F. Caspary and B. Lembcke, “Bioelectrical Impedance Analysis as Predictor of Survival in Patients with Human Immunodeficiency Virus Infection,” Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, Vol. 9, No. 1, 1995, pp. 20-25.
http://dx.doi.org/10.1097/00042560-199505010-00003
[30] P. Kotanko, N. W. Levin and F. Zhu, “Current State of Bioimpedance Technologies in Dialysis,” Nephrology Dialysis Transplantation, Vol. 23, No.3, 2008, pp. 808-812. http://dx.doi.org/10.1093/ndt/gfm889
[31] K. H. Koh, H. S. Wong, K. W. Go and Z. Morad, “The Implication of Bioimpedance Analysis in Peritoneal Dialysis patients,” Asian Chapter Newsletter, International Society of Peritoneal Dialysis, Vol. 9, No. 1, 2011, pp. 2-3.
[32] F. Zhu, M. K. Kuhlmann, G. A. Kaysen, S. Sarkar, C. Kaitwatcharachai, R. Khilnani, L. Stevens, E. F. Leonard, J. Wang, S. Heymsfield and N. W. Levin, “Segment-Specific Resistivity Improves body Fluid Volume Estimates from Bioimpedance Spectroscopy in Hemodialysis Patients,” Journal of Applied Physiology, Vol. 100, No. 2, 2006, pp. 717-724.
http://dx.doi.org/10.1152/japplphysiol.00669.2005
[33] F. Zhu, P. Kotanko, G. J. Handelman, J. G. Raimann, L. Liu, M. Carter, M. K. Kuhlmann, E. Seibert, E. F. Leonard and N. W. Levin, “Estimation of Normal Hydration in Dialysis Patients Using Whole Body and Calf Bioimpedance Analysis,” Physiological Measurement, Vol. 32, No. 7, 2011, pp. 887-902.
http://dx.doi.org/10.1088/0967-3334/32/7/S12
[34] L. Nescolarde, J. Rosell-Ferrer and T. Doñate, “Relationship between Segmental and Whole-Body Phase Angle in Peritoneal Dialysis Patients,” Physiological Measurement, Vol. 29, No. 9, 2008, pp. N49-N57.
http://dx.doi.org/10.1088/0967-3334/29/9/N01

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.