Optical Studies of Ag2O Thin Film Prepared by Electron Beam Evaporation Method


Silver oxide (Ag2O) thin films were deposited on glass substrates using electron beam gun evaporation techniques without oxygen atmosphere. The deposited films were post annealed at 100°C, 150°C, and 200°C, respectively. The surface morphologies, structural and optical properties at different annealing temperatures were studied using scanning electron microscopy (SEM), X-ray diffraction (XRD), and ultra-violet-visible spectroscopy. The XRD results show that the intensity of (200) plane intensified as the annealing temperature increased from 100°C to 200°C. The XRD spectra reveal that the films are polycrystalline, having cubic structure irrespective of post annealing temperatures. The optical band gap of Ag2O thin films decreases from 1.716 eV to 1.559 eV as the annealing temperature increases from 100°C to 200°C.

Share and Cite:

G. Saroja, V. Vasu and N. Nagarani, "Optical Studies of Ag2O Thin Film Prepared by Electron Beam Evaporation Method," Open Journal of Metal, Vol. 3 No. 4, 2013, pp. 57-63. doi: 10.4236/ojmetal.2013.34009.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. F. Pierson and C. Rousselot, “Stability of Reactively Sputtered Silver Oxide Films,” Surface and Coatings Technology, Vol. 200, No. 1-4, 2005, pp. 276-279. http://dx.doi.org/10.1016/j.surfcoat.2005.02.005
[2] M. Pandiaraman and N. Soundararajan, “Micro-Raman Studies on Thermally Evaporated Ag2Se Thin Films,” Theoretical and Applied Physics, Vol. 6, 2012, p. 7. http://www.jtaphys.com/content/6/1/
[3] M. Bielmann, P. Schwaller, P. Ruffieux, O. Groning, L. Schlapbachand and P. Groning, “AgO Investigated by Photoelectron Spectroscopy: Evidence for Mixed Valence,” Physical Review B: Condensed Matter and Materials Physics, Vol. 65, No. 23, 2002, Article ID: 235431.
[4] N. Yamamoto, S. Tonomura, T. Matsuoka and H. Tsubomura, “The Effect of Reducing Gases on the Conductivities of Metal Oxide Semiconductors,” Japanese Journal of Applied Physics, Vol. 20, No. 4, 1981, pp. 721-726. http://dx.doi.org/10.1143/JJAP.20.721
[5] B. J. Murray, Q. Li, J. T. Newberg, E. J. Menke, J. C. Hemminger and R. M. Penner, “Shape and Size-Selective Electrochemical Synthesis of Dispersed Silver(I) Oxide Colloids,” Nano Letters, Vol. 5, No. 11, 2005, pp. 2319-2324. http://dx.doi.org/10.1021/nl051834o
[6] B. J. Murray, Q. Li, J. T. Newberg, E. J. Menke, J. C. Hemminger and R. M. Penner, “Silver Oxide Microwires: Electrodeposition and Observation of Reversible Resistance Modulation upon Exposure to Ammonia Vapor,” Chemistry of Materials, Vol. 17, No. 26, 2005, pp. 6611-6618. http://dx.doi.org/10.1021/cm051647r
[7] B. J. Murray, J. T. Newberg, E. C. Walter, Q. Li, J. C. Hemminger and R. M. Penner, “Reversible Resistance Modulation in Mesoscopic Silver Wires Induced by Exposure to Amine Vapor,” Analytical Chemistry, Vol. 77, No. 16, 2005, pp. 5205-5214. http://dx.doi.org/10.1021/ac050636e
[8] E. Tselepis and E. Fortin, “Preparation and Photovoltaic Properties of Anodically Grown Ag2O Films,” Journal of Materials Science, Vol. 21, No. 3, 1986, pp. 985-988. http://dx.doi.org/10.1007/BF01117383
[9] Y. Ida, S. Watase, T. Shinagawa, M. Watanabe, M. Chigane, M. Inaba, A. Tasaka and M. Izaki, “Direct Electrodeposition of 1.46 eV Bandgap Silver(I) Oxide Semiconductor Films by Electrogenerated Acid,” Chemistry of Materials, Vol. 20, No. 4, 2008, pp.1254-1256. http://dx.doi.org/10.1021/cm702865r
[10] B. E. Breyfogle, C. Hung, M. G. Shumsky and J. A. Switzer, “Electrodeposition of Silver(II) Oxide Films,” Journal of the Electrochemical Society, Vol. 143, No. 9, 1996, pp. 2741-2746. http://dx.doi.org/10.1149/1.1837101
[11] Y. Her, Y. Lan, W. Hsu and S. Y. Tsai, “Effect of Constituent Phases of Reactively Sputtered AgOx Film on Recording and Readout Mechanisms of Super-Resolution Near-Field Structure Disk,” Journal of Applied Physics, Vol. 96, No. 3, 2004, p. 1283. http://dx.doi.org/10.1063/1.1767978
[12] J. Tominaga, “The Application of Silver Oxide Thin Films to Plasmon Photonic Devices,” Journal of Physics: Condensed Matter, Vol. 15, No. 25, 2003, p. R1101. http://dx.doi.org/10.1088/0953-8984/15/25/201
[13] W. A. Parkhurst, S. Dallek and B. F. Larrick, “Thermogravimetry-Evolved Gas Analysis of Silver Oxide Cathode Material,” Journal of The Electrochemical Society, Vol. 131, No. 8, 1984, pp. 1739-1742. http://dx.doi.org/10.1149/1.2115952
[14] S. Dallek, W. A. West and B. F. Larrick, “Decomposition Kinetics of AgO Cathode Material by Thermogravimetry,” Journal of the Electrochemical Society, Vol. 133, No. 12, 1986, pp. 2451-2454. http://dx.doi.org/10.1149/1.2108448
[15] S. Park, H. Kim, C. Jin, and C. Lee, “Intense Ultraviolet Emission from Needle-Like WO3 Nanostructures Synthesized by Noncatalytic Thermal Evaporation,” Nanoscale Research Letters, Vol. 6, No. 1, 2011, p. 451. http://dx.doi.org/10.1186/1556-276X-6-451
[16] M. Niederberger, M. H. Bartl and G. D. Stucky, “Benzyl Alcohol and Transition Metal Chlorides as a Versatile Reaction System for the Nonaqueous and Low-Temperature Synthesis of Crystalline Nano-Objects with Controlled Dimensionality,” Journal of the American Chemical Society, Vol. 124, No. 46, 2002, pp. 13642-13643. http://dx.doi.org/10.1021/ja027115i
[17] J. Y. Luo, F. L. Zhao, L. Gong et al., “Ultraviolet-Visible Emission from Three-Dimensional WO3-x Nanowire Networks,” Applied Physics Letters, Vol. 91, No. 9, 2007, pp. 093124-1-093124-3
[18] L. I. Maissel and R. Clang, “Handbook of Thin Film Technology,” McGraw-Hill, New York, 1970.
[19] R. F. Bunshah, “Deposition Technologies for Films and Coatings: Developments and Applications,” Noyes Publications, Park Ridge, 1982.
[20] J. Wang, V. Sallet, F. Jomard, A. M. Rego, E. Elamurugu, R. Martins and E. Fortunato, “Influence of Substrate Temperature on N-Doped ZnO Films Deposited by RF Magnetron Sputtering,” Thin Solid Films, Vol. 515, No. 24, 2007, pp. 8785-8788. http://dx.doi.org/10.1016/j.tsf.2007.03.061
[21] C. Vijayan, M. Pandiaraman, N. Soundararajan, R. Chandramohan, V. Dhanasekaran, K. Sundaram, T. Mahalingam and A John Peter, “Structural and Optical Properties of Ag2SeTe Nano Thin Films Prepared by Thermal Evaporation,” Journal of Materials Science: Materials in Electronics, Vol. 22, No. 5, 2011, pp. 545-550.
[22] M. Erol, Y. Han, S. K. Stanley, C. M. Stafford, H. Du and S. Sukhishvili, “SERS Not to Be Taken for Granted in the Presence of Oxygen,” Journal of the American Chemical Society, Vol. 131, No. 22, 2009, pp. 7480-7481. http://dx.doi.org/10.1021/ja807458x
[23] Y. Hoshi and T. Kiyomura, “ITO Thin Films Deposited at Low Temperatures Using a Kinetic Energy Controlled Sputter-Deposition Technique,” Thin Solid Films, Vol. 411, No. 1, 2002, pp. 36-41. http://dx.doi.org/10.1016/S0040-6090(02)00170-0
[24] A. K. Chawla, S. Singhal, H. O. Gupta and R. Chandra, “Effect of Sputtering Gas on Structural and Optical Properties of Nanocrystalline Tungsten Oxide Films,” Thin Solid Films, Vol. 517, No. 3, 2008, pp. 1042-1046. http://dx.doi.org/10.1016/j.tsf.2008.06.068
[25] R. Swanepoel, “Determination of the Thickness and Optical Constants of Amorphous Silicon,” Journal of Physics E, Vol. 16, No. 12, 1983, p. 1214.
[26] B. Baloukas, J. M. Lamarre and L. Martinu, “Electrochromic Interference Filters Fabricated from Dense and Porous Tungsten Oxide Films,” Solar Energy Materials and Solar Cells, Vol. 95, No. 3, 2011, pp. 807-815. http://dx.doi.org/10.1016/j.solmat.2010.10.026

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.