Share This Article:

Natural and Anthropogenic Influence in Water Quality: The Case of Linares City, NE Mexico

Abstract Full-Text HTML Download Download as PDF (Size:873KB) PP. 1066-1075
DOI: 10.4236/jwarp.2013.511112    3,690 Downloads   5,535 Views   Citations


The aim of this research paper was to identify whether the water quality had been influenced either by the natural environment or by anthropogenic activities or both in the municipality of Linares, the second largest city of the State of Nuevo Leon, NE Mexico. The superficial water (Pablillo River) and the groundwater quality (from a fractured and a porous aquifers hydraulically interconnected) were determined by comparing their chemical composition with maximum permissible limits for water consumption and irrigation use. A hydrogeochemical modeling was performed to identify the distribution of aqueous species responsible for the presence of some dissolved or precipitated mineral species, as well as an identification of geochemical factors responsible of superficial and groundwater quality. A canonical correspondence analysis was allowed to determine if the natural environment and/or anthropogenic activities were responsible for water quality. The parameters analysed in both aquifers, as well as in the Pablillo River, were total solids, suspended solids, nitrate, and chloride; barium and mercury were present in both aquifers. As a natural influence, the predominant mineral species are as following: under-saturated anhydrite (porous aquifer), over-saturated aragonite, calcite, dolomite, and gypsum (both aquifers and Pablillo River), barite and whiterite (only in fractured aquifer). The geochemical factors responsible for natural contamination were rock dominance (fractured aquifer), and evaporation dominance (porous aquifer, Pablillo River). On the other hand, anthropogenic activities such as changes in soil use and the presence of point (old municipal landfill, pig farms, barite deposit), and diffuse (agricultural areas, septic tanks and latrines) pollution sources had influence in the presence of contaminants such as total and fecal coliforms, nitrates, chlorides, mercury and barium. Several control and remediation strategies should be taken into account to prevent this pollution in the future.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

L. Lizárraga-Mendiola, J. Návar, A. Blanco-Piñón, M. González-Sandoval and H. De-León-Gómez, "Natural and Anthropogenic Influence in Water Quality: The Case of Linares City, NE Mexico," Journal of Water Resource and Protection, Vol. 5 No. 11, 2013, pp. 1066-1075. doi: 10.4236/jwarp.2013.511112.


[1] A. Esmaeili and F. Moore, “Hydrogeochemical Assessment of Groundwater in Isfahan Province, Iran,” Environmental Earth Sciences, Vol. 67, No. 1, 2012, pp. 107-120.
[2] N. Hammouri and A. El-Naqa, “Hydrological Modeling of Ungauged Wadis in Arid Environments Using GIS: A Case Study of Wadi Madoneh in Jordan,” Revista Mexicana de Ciencias Geológicas, Vol. 24, No. 2, 2006, pp. 185-196.
[3] F. Rodriguez, H. Andrieu and F. Morena, “A Distributed Hydrological Model for Urbanized Areas—Model Development and Application to Case Studies,” Journal of Hydrology, Vol. 351, No. 3-4, 2008, pp. 268-287.
[4] W. Nie, Y. Yuan, W. Kepner, M. S. Nash, M. Jackson and C. Erickson, “Assessing Impacts of Land Use and Land Cover Changes on Hydrology for the Upper San Pedro Watershed,” Journal of Hydrology, Vol. 407, No. 1-4, 2011, pp. 105-114.
[5] E. Bocanegra, O. M. Quiroz-Londono, D. E. Martínez and A. Romanelli, “Quantification of the Water Balance and Hydrogeological Processes of Groundwater-Lake Interactions in the Pampa Plain, Argentina,” Environmental Earth Sciences, Vol. 68, No. 8, 2012, pp. 2347-2357.
[6] A. El-Naqa, N. Hammouri and M. Kuisi, “GIS-Based Evaluation of Groundwater Vulnerability in the Russeifa Area, Jordan,” Revista Mexicana de Ciencias Geológicas, Vol. 23, No. 3, 2006, pp. 277-287.
[7] D. Carreón-Freyre, M. Cerca, L. Luna-González and F. J. Gámez-González, “Influencia de la Estratigrafía y Estructura Geológica en el Flujo de Agua Subterránea del Valle de Querétaro,” Revista Mexicana de Ciencias Geológicas, Vol. 22, No. 1, 2005, pp. 1-18.
[8] L. A. Aguilar-Pérez, M. A. Ortega-Guerrero, J. Lugo-Hubp and D. C. Ortiz-Zamora, “Análisis Numérico Acoplado de los Desplazamientos Verticales y Generación de Fracturas por Extracción de Agua Subterránea en las Proximidades de la Ciudad de México,” Revista Mexicana de Ciencias Geológicas, Vol. 23, No. 3, 2006, pp. 247-261.
[9] L. E. Lesser-Carrillo, J. M. Lesser-Illades, S. Arellano-Islas and D. González-Posadas, “Balance Hídrico y Calidad del Agua Subterránea en el Acuífero del Valle del Mezquital, México Central,” Revista Mexicana de Ciencias Geológicas, Vol. 28, No. 3, 2011, pp. 323-336.
[10] B. López-álvarez, J. A. Ramos-Leal, J. Moran-Ramírez, A. Cardona-Benavides and G. Hernández-García, “Origen de la Calidad del Agua del Acuífero Colgado y su Relación con los Cambios de Uso de Suelo en el Valle de San Luis Potosí,” Boletín de la Sociedad Geológica Mexicana, Vol. 65, No. 1, 2013, pp. 9-26.
[11] C. Rodríguez-de-Barbarín and J. M. Barbarín-Castillo, “Influence of the Regional Geology, the Stationary Cycles and Human Settlements in the Characterization of Superficial Waters in the Linares-Cerro Prieto Basin, N.L., Mexico,” Geofísica Internacional, Vol. 32, No. 2, 1993, pp. 221-235.
[12] H. De León-Gómez and F. Medina-Barrera, “Environmental Impact of the Landfill of Linares/Mexico in the Groundwaters,” Acts XI Latinoamerican Congress of Geology and III Uruguayan Congress of Geology, Montevideo, 2001, CD-Rom, pp. 1-6.
[13] L. Lizárraga-Mendiola, H. De León-Gómez, F. Medina-Barrera and J. Návar, “Evaluation of the Aquifer Impacted by the Landfill of Linares, Mexico,” Neues Jahrbuch für Geologie und Palaontologie, Vol. 236, No. 1/2, 2005, pp. 225-244.
[14] R. A. Dávila-Porcel, H. De-León-Gómez, F. Velasco-Tapia, A. Hoppe and C. Schüth, “Hydrogeology and Hydrochemistry of Groundwater in the Pablillo River Basin Linares, Nuevo Leon, Mexico,” Abstracts and Program, LAK Gottingen, 7-9 April 2009, pp. 218-220.
[15] R. A. Dávila-Porcel, H. De León-Gómez, C. Schüth and A. Hoppe, “Groundwater Vulnerability Assessment for Urban Hydrogeology Analysis; Study Case: Linares, Mexico,” Abstracts and Program, LAK, Heidelberg, 7-9 April 2011, p. 45.
[16] R. A. Dávila-Porcel and H. De León-Gómez, “Groundwater Origin and its Hydrogeochemistry through GIS Maps in Linares Region, Mexico,” Journal of Water Resource and Protection, Vol. 5, No. 8A, 2013, pp. 1-12.
[17] J. Návar and T. J. Synnott, “Soil Infiltration and Land Use in Linares, N.L., Mexico,” Revista Terra Latinoamericana, Vol. 18, No. 3, 2001, pp. 255-262.
[18] M. Ruiz, “Zur Gliederung Verbreitung und okologischen Bewertung der Boden im Gebiet von Linares, N.L.,” Bachelor thesis, Gotingen Beitr. Z. Land U. Forstw. Tropen und Suptropen, Gottingen, 1990.
[19] S. M. Galván-Mancilla, “Hydrogeologic Cartography of the 1st Terrace between Hualahuises and Linares, N.L.,” Bachelor Thesis, Autonomous University of Nuevo Leon, Nuevo Leon, 1996.
[20] S. I. De-la-Garza-González, “Geological/Hydrogeological Study in the Citric Region (Linares-Hualahuises) Nuevo Leon, Mexico,” Bachelor Thesis, Autonomous University of Nuevo Leon, Nuevo Leon, 2000.
[21] M. M. Rangel-Rodríguez, “Hydrogeologie des Universitats-Campus der Universidad Autónoma de Nuevo León, Linares/Mexiko,” Bachelor Thesis, University of Darmstadt, 1989.
[22] Ministry of Health and Welfare, “NOM-127-SSA1-1994, Norm that Establishes the Maximum Permissible Limits for Water and Agricultural Quality for Human Consumption,” 2000, 13 p.
[23] Ministry of Environment and Natural Resources, “NOM-001-SEMARNAT-1996, Norm that Establishes the Maximum Permissible Limits of Contaminants Discharged to Wastewaters,” 1996, 35 p.
[24] United States Environmental Protection Agency, US EPA, “National Primary Drinking Water Regulations,” Washington DC, 2009.
[25] World Health Organization, WHO, “Guidelines for Drinking-water Quality,” 2011, 564 p.
[26] L. A. Richards, “US Salinity Laboratory, Diagnosis and Improvement of Saline and Alkaline Soils,” US Department of Agriculture Hand Book, 1954.
[27] L. V. Wilcox, “The Quality Water for Irrigation Use,” US. Department of Agricultural Bulletin, Vol. 1962, 1948, p. 40.
[28] D. L. Parkhurst, “PHREEQC a Computer Program for Speciation, Reaction-Path, Advective Transport, and Inverse Geochemical Calculations,” US Water Resources Investigation Report, 1995, Lakewood, pp. 95-4227.
[29] W. J. Deutsch, “Groundwater geochemistry. Fundamentals and Applications to Contamination,” Lewis Publishers, New York, 1997.
[30] R. J. Gibbs, “Mechanism Controlling World Water Chemistry,” Science, Vol. 70, No. 3962, 1970, pp. 1088-1090.
[31] C. A. J. Appelo and D. Postma, “Geochemistry, Groundwater and Pollution,” Rotterdam, AA Balkema, New York, 1997.
[32] R. Chesnaux, S. Rafini and A. P. Elliot, “A Numerical Investigation to Illustrate the Consequences of Hydraulic Connections between Granular and Fractured-Rock Aquifers,” Hydrogeology Journal, Vol. 20, No. 8, 2012, pp. 1669-1680.
[33] S. E. Lindberg, D. Wallschlager, E. M. Prestbo, N. S. Bloom, J. Price and D. Reinhart, “Methylated Mercury Species in Municipal Waste Landfill Gas Sampled in Florida, USA,” Atmospheric Environment, Vol. 35, No. 23, 2001, pp. 4011-4015.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.