Removal of Carbon Monoxide from Hydrogen-rich Fuels over CeO2-promoted Pt/Al2O3

Abstract

A comparative study of catalytic CO oxidation and selective CO oxidation over Pt/Al2O3 and CeO2-promoted Pt/Al2O3 catalysts has been investigated for the removal of a trace amount of CO from the reformed gas. The catalysts were prepared by sol gel and incipient wetness impregnation. CO oxidation and selective CO oxidation were carried out with a 5%Pt/Al2O3 and a 5%Pt/15%CeO2/Al2O3. The presence of 15%CeO2 inthe 5%Pt/Al2O3 dramatically improves the activities to CO oxidation and selective CO oxidation at low temperature (<180). FTIR results indicate that CO could react with lattice oxygen from ceria and release CO2 as a product. Low space velocity would obtain high CO conversion at low temperatures while high space velocity would obtain high CO conversion at high temperatures. The results also show that a 5%Pt/15%CeO2/Al2O3 can completely oxidize 1% CO at180with selectivity of 52% and space velocity of70,000 cm3·g-1·h-1. Under the realistic gas feed with 1%O2, this catalyst is very stable and retains its activity and selectivity at180during 72 h.  

Share and Cite:

A. Wongkaew and P. Limsuwan, "Removal of Carbon Monoxide from Hydrogen-rich Fuels over CeO2-promoted Pt/Al2O3," Advances in Chemical Engineering and Science, Vol. 3 No. 4B, 2013, pp. 7-14. doi: 10.4236/aces.2013.34B002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] K. Jost, “Gasoline-reforming Fuel Cell,” Automotive Engineering , 1997, pp. 151-152.
[2] X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhang, D. Song, A.-S. Liu, H. Wang and J. Shen, “A Review of PEM Hydrogen Fuel Cell Contamination: Impacts, Mechanisms, and Mitigation,” Journal of Power Sources, Vol. 165, 2007, pp. 739-756. doi:10.1016/j.jpowsour.2006.12.012
[3] S. J. C. Cleghorn, X. Ren, T. E. Springer, M. S. Wilson, C. Zawodzinski, T. A. Zawodzinski and S. Gottesfeld, “PEM fuel Cells for Transportation and Stationary Power Generation Applications,” International Journal of Hydrogen Energy, Vol. 22, 1997, pp. 1137-1144. doi:10.1016/S0360-3199(97)00016-5
[4] W. A. Adams, J. Blair, K. R. Bullock and C. L. Gardner, “Enhancement of the Performance and Reliability of CO Poisoned PEM Fuel Cells,” Journal of Power Sources Vol. 145, No. 1, 2005, pp. 55-61. doi:10.1016/j.jpowsour.2004.12.049
[5] S. Gottesfeld, US patent 4,910,099 Preventing CO poisoning in fuel cells (Mar 20, 1990).
[6] Y. H. Kim, S.-D. Yim and E. D. Park, “Selective CO Oxidation in a Hydrogen-rich Stream Over Ru/SiO2, Catal,” Today, Vol. 185, 2012, pp. 143-150. doi:10.1016/j.cattod.2011.07.022
[7] J. Li, P. Zhu, S. Zuo, Q. Huang and R. Zhou, “Influence of Mn Doping on the Performance of CuO-CeO Catalysts for Selective Oxidation of CO in Hydrogenrich Streams,” Applied Catalysis A: General, Vol. 381, 2010, pp. 261-266.doi:10.1016/j.apcata.2010.04.020
[8] J. W. Park, J. H. Jeong, W. L. Yoon, C. S. Kim, D. K. Lee, Y.-K. Park and Y. W. Rhee, “Selective Oxidation of CO in Hydrogen-rich Stream over Cu–Ce Catalyst Promoted with Transition Metals,” International Journal of Hydrogen Energy, Vol. 30, No. 2, 2005, pp. 209-220. doi:10.1016/j.ijhydene.2004.04.016
[9] Y. -F. Han, M. Kinne, R. J. Behm, “Selective Oxidation of CO on Ru/γ-Al2O3 in Methanol Reformate at Low Temperatures, Appl. Catal. B: Environ, Vol. 52, No. 2, 2004, pp. 123-134.doi:10.1016/j.apcatb.2004.03.017
[10] C.-T. Chang, B.-J. Liaw, Y.-P. Chen, Yin-Zu Chen, “Characteristics of Au/MgxAlO Hydrotalcite Catalysts in CO Selective Oxidation, Journal of Molecular Catalysis A: Chemical, Vol. 300, No. 1-2, 2009, pp. 80-88. doi:10.1016/j.molcata.2008.10.040
[11] M. Kotobuki, A. Watanabe, H. Uchida, H. Yamashita, M. Watanabe, “Development of Pt/ZSM-5 Catalyst with High CO Selectivity for Preferential Oxidation of Carbon Monoxide in a Reformed Gas,” Chem. Lett. Vol. 34, 2005, pp. 866-867. doi:10.1246/cl.2005.866
[12] J. L. Ayastuy, A. Gil-Rodríguez, M. P. González-Marcos, M. A. Gu-tiérrez-Ortiz, Effect of Process Variables on Pt/CeO2 Catalyst Behavior for the PROX Reaction, International Journal of Hydrogen Energy, Vol. 31, 2006, pp. 2231-2242.doi:10.1016/j.ijhydene.2006.04.008
[13] M. Kotobuki, A. Watanabe, H. Uchida, H. Yamashita, M. Watanabe, “High Catalytic Performance of Pt-Fe Alloy Nanoparticles Supported in Mordenite Pores for Preferential CO Oxidation in H2-rich Gas, Applied Catalysis A: General, Vol. 307, 2006, pp. 275-283. doi:10.1016/j.apcata.2006.04.003
[14] M. J. Kahlich, H. A. Gasteiger and R. J. Behm, “Kinetics of the Selective CO Oxidation in H2-Rich Gas on Pt/Al2O3,” Journal of Catalysis, Vol. 171, 1997, pp. 93-105. doi:10.1006/jcat.1997.1781
[15] I. H. Son, M. Shamsuzzoha and A. M. Lane, “Promotion of Pt/γ-Al2O3 by New Pretreatment for Low-Temperature Preferential Oxidation of CO in H2 for PEM Fuel Cells,” Journal of Catalysis, Vol. 210, 2002, pp. 460-465. doi:10.1006/jcat.2002.3707
[16] A. Manasilp and E. Gulari, “Selective CO Oxidation over Pt/alumina Catalysts for Fuel Cell Applications, Applied Catalysis B: environmental, Vol. 37, 2002, pp. 17-25. doi:10.1016/S0926-3373(01)00319-8
[17] H. Tanaka, M. Kuriyama, Y. Ishida, S.-I. Ito and K. Tomishige, “Preferential CO Oxidation in Hydrogen-rich Stream over Pt Catalysts Modified with Alkali Metals: Part II. Catalyst Characterization and Role of Alkali Metals,” Applied Catalysis A: Generl, Vol. 343, No. 1-2, 2008, pp. 125-133 doi:10.1016/j.apcata.2008.03.029
[18] Y. Li, Q. Fu, M. F., Stephanopoulos, Low-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts, Applied Catalysis B: Environmental, Vol. 27, No. 3, 2000, pp. 179-191. doi:10.1016/S0926-3373(00)00147-8
[19] C. Serre, F. Garin, G. Belot and G. Maire, “Reactivity of Pt/Al2O3 and Pt-CeO2Al2O3 Catalysts for the Oxidation of Carbon Monoxide by Oxygen: I. Catalyst Characterization by TPR Using CO as Reducing Agent,” Journal of Catalysis, Vol. 141, No. 1, 1993, pp. 1-8. doi:10.1006/jcat.1993.1113
[20] A. Martînez-Arias, J. M. Coronado, R. Cataluña, J. C. Conesa and J. Soria, “Influence of Mutual Platinum-Dispersed Ceria Interactions on the Promoting Effect of Ceria for the CO Oxidation Reaction in a Pt/CeO2/Al2O3 Catalyst,” The Journal of Physical Chemistry Letters B, Vol. 102, 1998, pp. 4357-4365. doi:10.1021/jp9805306
[21] A. Parinyaswan, S. Pongstabodee and A. Luengnaruemitchai, “Catalytic Performances of Pt–Pd/CeO2 Catalysts for Selective CO Oxidation,” International Journal of Hydrogen Energy, Vol. 31, No. 13, 2006, pp. 1942-1949. doi:10.1016/j.ijhydene.2006.05.002
[22] F. A. Silva, D. S. Martinez, J. A. C. Ruiz, L. V. Mattos, C. E. Hori, G. B. Noronha, The Effect of the Use of Cerium-doped Alumina on the Performance of Pt/CeO2/Al2O3 and Pt/CeZrO2/Al2O3 Catalysts on the Partial Oxidation of Methane, Applied Catalysis A: General, Vol. 335, 2008, pp. 145-152. doi:10.1016/j.apcata.2007.11.003
[23] J. C. Brown and E. Gulari, “Hydrogen Production from Methanol Decomposition over Pt/Al2O3 and Ceria Promoted Pt/Al2O3 Catalysts, Catalysis Communications, Vol. 5, No. 8, 2004, pp. 431-436. doi:10.1016/j.catcom.2004.05.008
[24] I. H. Son and A. M. Lane, Promotion of Pt/γ-Al2O3 by Ce for Preferential Oxidation of CO in H2, Catalysis Letters, Vol. 76, No. 3-4, 2001, pp. 151-154. doi:10.1023/A:1012293311973
[25] I. H. Son, Study of Ce-Pt/γ-Al2O3 for the Selective Oxidation of CO in H2 for Application to PEFCs: Effect of Gases, Journal of Power Sources, Vol. 159, 2006, pp. 1266-1273. doi:10.1016/j.jpowsour.2005.12.014
[26] B. E. Yoldas, “Alumina Sol Preparation from Alkoxides,” Ceram. Bull, Vol. 54, 1975, pp. 289-290.
[27] J. H. B. J. Hoebink, J. P. Huinink and G. B. Marin, “A Quantitative Analysis of Transient Kinetic Experiments: The Oxidation of CO by O2 over Pt,” Applied Catalysis A: General, Vol. 160, 1997, pp. 139-151. doi:10.1016/S0926-860X(97)00132-4
[28] C. Serre, F. Garin, G. Belot and G. Maire, “Reactivity of Pt/Al2O3 and Pt-CeO2Al2O3 Catalysts for the Oxidation of Carbon Monoxide by Oxygen : II. Influence of the Pretreatment Step on the Oxidation Mechanism,” Journal of Catalysis, Vol. 141, 1993, pp. 9-20. doi:10.1006/jcat.1993.1114
[29] D. Liu, G.-H. Que, Z.-X. Wang and Z.-F. Yan, “In Situ FT-IR Study of CO and H2 Adsorption on a Pt/Al2O3 Catalyst,” Catalysis Today, Vol. 68, No. 1-3, 2001, pp. 155-160. doi:10.1016/S0920-5861(01)00306-6
[30] A. Holmgren, G. Andersson and D. Duprez, “Interactions of CO with Pt/ceria Catalysts,” Applied Catalysis B: Environmental, Vol. 22, No. 3, 1999, pp. 215-230. doi:10.1016/S0926-3373(99)00047-8
[31] A. Holmgren, D. Duprez, B. Andersson, “A Model of Oxygen Transport in Pt/Ceria Catalysts from Isotope Exchange,” Journal of Catalysis, Vol. 182, No. 2, 1999, pp. 441-448.doi:10.1006/jcat.1998.2334
[32] J. L. Ayastuy, M. P. González-Marcos, A. Gil-Rodríguez, J. R. González-Velasco, M. A. Gutiérrez-Ortiz, “Selective CO Oxidation over CeXZr1?XO2-supported Pt Catalysts, Ca-talysis Today, Vol. 116, 2006, pp. 391-399. doi:10.1016/j.cattod.2006.05.074
[33] E. Simsek, S. Ozkara, A. E. Aksoylu and Z. I. Onsan, “Preferential CO Oxida-tion over Activated Carbon Supported Catalysts in H2-rich Gas Streams Containing CO2 and H2O, Applied Catalysis A: General, Vol. 316, No. 2, 2007, pp. 169-174 doi:10.1016/j.apcata.2006.09.001

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.