Share This Article:

Reformulation of Relativistic Quantum Mechanics Equations with Non-Commutative Sedeons

Abstract Full-Text HTML Download Download as PDF (Size:181KB) PP. 53-60
DOI: 10.4236/am.2013.410A3007    6,703 Downloads   15,702 Views   Citations

ABSTRACT

We present sixteen-component values “sedeons”, generating associative non-commutative space-time algebra. The generalized relativistic wave equations based on sedeonic wave function and space-time operators are proposed. We demonstrate that sedeonic second-order wave equation for massive field can be reformulated as the quasi-classical equation for the potentials of the field or in equivalent form as the Maxwell-like equations for the field intensities. The sedeonic first-order Dirac-like equations for massive and massless fields are also discussed.

Cite this paper

V. Mironov and S. Mironov, "Reformulation of Relativistic Quantum Mechanics Equations with Non-Commutative Sedeons," Applied Mathematics, Vol. 4 No. 10C, 2013, pp. 53-60. doi: 10.4236/am.2013.410A3007.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. L. Adler, “Quaternionic Quantum Mechanics and Quantum Fields,” Oxford University Press, New York, 1995.
[2] V. Majernik, “Quaternionic Formulation of the Classical Fields,” Advances in Applied Clifford Algebras, Vol. 9, No. 1, 1999, pp. 119-130.
http://dx.doi.org/10.1007/BF03041944
[3] K. Imaeda, “A New Formulation of Classical Electrodynamics,” Nuovo Cimento, Vol. 32, No. 1, 1976, pp. 138162. http://dx.doi.org/10.1007/BF02726749
[4] A. J. Davies, “Quaternionic Dirac Equation,” Physical Review D, Vol. 41, No. 8, 1990, pp. 2628-2630.
http://dx.doi.org/10.1103/PhysRevD.41.2628
[5] S. De Leo and P. Rotelli, “Quaternion Scalar Field,” Physical Review D, Vol. 45, No. 2, 1992, pp. 575-579.
http://dx.doi.org/10.1103/PhysRevD.45.575
[6] C. Schwartz, “Relativistic Quaternionic Wave Equation,” Journal of Mathematical Physics, Vol. 47, No. 12, 2006, Article ID: 122301. http://dx.doi.org/10.1063/1.2397555
[7] Y.-F. Liu, “Triality, Biquaternion and Vector Representation of the Dirac Equation,” Advances in Applied Clifford Algebras, Vol. 12, No. 2, 2002, pp. 109-124.
http://dx.doi.org/10.1007/BF03161242
[8] M. Gogberashvili, “Octonionic Electrodynamics,” Journal of Physics A: Mathematics in General, Vol. 39, No. 22, 2006, pp. 7099-7104.
http://dx.doi.org/10.1088/0305-4470/39/22/020
[9] A. Gamba, “Maxwell’s Equations in Octonion Form,” Nuovo Cimento A, Vol. 111, No. 3, 1998, pp. 293-302.
[10] T. Tolan, K. Ozdas and M. Tanisli, “Reformulation of Electromagnetism with Octonions,” II Nuovo Cimento B, Vol. 121, No. 1, 2006, pp. 43-55.
http://dx.doi.org/10.1393/ncb/i2005-10189-9
[11] S. Demir and M. Tanisli, “A Compact Biquaternionic Formulation of Massive Field Equations in Gravi-Electromagnetism,” European Physical Journal Plus, Vol. 126, 2011, p. 115.
http://dx.doi.org/10.1140/epjp/i2011-11115-8
[12] B. C. Chanyal, P. S. Bisht and O. P. S. Negi, “Generalized Octonion Electrodynamics,” International Journal of Theoretical Physics, Vol. 49, No. 6, 2010, pp. 1333-1343.
http://dx.doi.org/10.1007/s10773-010-0314-5
[13] P. S. Bisht, G. Karnatak and O. P. S. Negi, “Generalized Gravi-Electromagnetism,” International Journal of Theoretical Physics, Vol. 49, No. 6, 2010, pp. 1344-1356.
http://dx.doi.org/10.1007/s10773-010-0315-4
[14] V. Dzhunushaliev, “Nonassociativity, Supersymmetry and Hidden Variables,” Journal of Mathematical Physics, Vol. 49, No. 4, 2008, Article ID: 042108.
http://dx.doi.org/10.1063/1.2907868
[15] M. Gogberashvili, “Octonionic Version of Dirac Equations,” International Journal of Modern Physics A, Vol. 21, No. 17, 2006, pp. 3513-3523.
http://dx.doi.org/10.1142/S0217751X06028436
[16] S. De Leo and K. Abdel-Khalek, “Octonionic Dirac Equation,” Progress in Theoretical Physics, Vol. 96, No. 4, 1996, pp. 833-846.
http://dx.doi.org/10.1143/PTP.96.833
[17] D. Hestenes, “Observables, Operators, and Complex Numbers in the Dirac Theory,” Journal of Mathematical Physics, Vol. 16, No. 3, 1975, pp. 556-572.
http://dx.doi.org/10.1063/1.522554
[18] K. Imaeda and M. Imaeda, “Sedenions: Algebra and Analysis,” Applied Mathematics and Computations, Vol. 115, No. 2-3, 2000, pp. 77-88.
http://dx.doi.org/10.1016/S0096-3003(99)00140-X
[19] K. Carmody, “Circular and Hyperbolic Quaternions, Octonions, and Sedenions,” Applied Mathematics and Computations, Vol. 28, No. 1, 1988, pp. 47-72.
http://dx.doi.org/10.1016/0096-3003(88)90133-6
[20] K. Carmody, “Circular and Hyperbolic Quaternions, Octonions, and Sedenions—Further Results,” Applied Mathematics and Computations, Vol. 84, No. 1, 1997, pp. 27-47. http://dx.doi.org/10.1016/S0096-3003(96)00051-3
[21] J. Koplinger, “Dirac Equation on Hyperbolic Octonions,” Applied Mathematics and Computations, Vol. 182, No. 1, 2006, pp. 443-446.
http://dx.doi.org/10.1016/j.amc.2006.04.005
[22] S. Demir and M. Tanisli, “Sedenionic Formulation for Generalized Fields of Dyons,” International Journal of Theoretical Physics, Vol. 51, No. 4, 2012, pp. 1239-1252.
http://dx.doi.org/10.1007/s10773-011-0999-0
[23] W. P. Joyce, “Dirac Theory in Spacetime Algebra: I. The Generalized Bivector Dirac Equation,” Journal of Physics A: Mathematics in General, Vol. 34, No. 10, 2001, pp. 1991-2005.
http://dx.doi.org/10.1088/0305-4470/34/10/304
[24] C. Cafaro and S. A. Ali, “The Spacetime Algebra Approach to Massive Classical Electrodynamics with Magnetic Monopoles,” Advances in Applied Clifford Algebras, Vol. 17, No. 1, 2006, pp. 23-36.
http://dx.doi.org/10.1007/s00006-006-0014-7
[25] V. L. Mironov and S. V. Mironov, “Octonic Representation of Electromagnetic Field Equations,” Journal of Mathematical Physics, Vol. 50, No. 1, 2009, Article ID: 012901. http://dx.doi.org/10.1063/1.3041499
[26] V. L. Mironov and S. V. Mironov, “Octonic SecondOrder Equations of Relativistic Quantum Mechanics,” Journal of Mathematical Physics, Vol. 50, No. 1, 2009, Article ID: 012302.
http://dx.doi.org/10.1063/1.3058644
[27] V. L. Mironov and S. V. Mironov, “Octonic First-Order Equations of Relativistic Quantum Mechanics,” International Journal of Modern Physics A, Vol. 24, No. 22, 2009, pp. 4157-4167.
http://dx.doi.org/10.1142/S0217751X09045480
[28] V. L. Mironov and S. V. Mironov, “Sedeonic Generalization of Relativistic Quantum Mechanics,” International Journal of Modern Physics A, Vol. 24, No. 32, 2009, pp. 6237-6254.
http://dx.doi.org/10.1142/S0217751X09047739
[29] L. D. Landau and E. M. Lifshits, “Classical Theory of Fields,” 4th Edition, Pergamon Press, New York, 1975.
[30] P. A. M. Dirac, “The Principles of Quantum Mechanics,” Clarendon Press, Oxford, 1958.
[31] A. Macfarlane, “Hyperbolic Quaternions,” Proceedings of the Royal Society at Edinburgh, 1899-1900 Sessions, pp. 169-181.
[32] W. Pauli, “Zur Quantenmechanik des Magnetischen Elektrons,” Zeitschrift für Physik, Vol. 43, No. 9-10, 1927, pp. 601-623. http://dx.doi.org/10.1007/BF01397326
[33] P. A. M. Dirac, “The Quantum Theory of the Electron,” Proceedings of Royal Society at London. Series A, Vol. 117, No. 778, 1928, pp. 610-624.
http://dx.doi.org/10.1098/rspa.1928.0023

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.