Share This Article:

Characterization of Pectin Nanocoatings at Polystyrene and Titanium Surfaces

Full-Text HTML Download Download as PDF (Size:2517KB) PP. 20-28
DOI: 10.4236/jsemat.2013.34A1003    3,529 Downloads   5,871 Views   Citations


The titanium implant surface plays a crucial role for implant incorporation into bone. A new strategy to improve implant integration in a bone is to develop surface nanocoatings with plant-derived polysaccharides able to increase adhesion of bone cells to the implant surface. The aim of the present study was to physically characterize and compare polystyrene and titanium surfaces nanocoated with different Rhamnogalacturonan-Is (RG-I) and to visualize RG-I nanocoatings. RG-Is from potato and apple were coated on aminated surfaces of polystyrene, titianium discs and titanium implants. To characterize, compare and visualize the surface nanocoatings measurements of contact angle measurements and surface roughness with atomic force microscopy, scanning electron microscopy, and confocal microscopy was performed. We found that, both unmodified and enzymatic modified RG-Is influenced surface wettability, without any major effect on surface roughness (Sa, Sdr). Furthermore, we demonstrated that it is possible to visualize the pectin RG-Is molecules and even the nanocoatings on titanium surfaces, which have not been presented before. The comparison between polystyrene and titanium surface showed that the used material affected the physical properties of non-coated and coated surfaces. RG-Is should be considered as a candidate for new materials as organic nanocoatings for biomaterials in order to improve bone healing.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

K. Gurzawska, K. Dirscherl, Y. Yihua, I. Byg, B. Jørgensen, R. Svava, M. Nielsen, N. Jørgensen and K. Gotfredsen, "Characterization of Pectin Nanocoatings at Polystyrene and Titanium Surfaces," Journal of Surface Engineered Materials and Advanced Technology, Vol. 3 No. 4A, 2013, pp. 20-28. doi: 10.4236/jsemat.2013.34A1003.


[1] T. Albrektsson and A. Wennerberg, “Oral Implant Surfaces: Part 1—Review Focusing on Topographic and Chemical Properties of Different Surfaces and in Vivo Responses to Them,” The International Journal of Prosthodontics, Vol. 17, No. 5, 2004, pp. 536-543.
[2] T. Albrektsson and A. Wennerberg, “Oral Implant Surfaces: Part 2—Review Focusing on Clinical Knowledge of Different Surfaces,” The International Journal of Prosthodontics, Vol. 17, No. 5, 2004, pp. 544-564.
[3] D. M. Dohan Ehrenfest, P. G. Coelho, B. S. Kang, Y. T. Sul and T. Albrektsson, “Classification of Osseointegrated Implant Surfaces: Materials, Chemistry and Topography,” Trends in Biotechnology, Vol. 28, No. 4, 2010, pp. 198-206.
[4] G. Mendonca, D. B. Mendonca, F. J. Aragao and L. F. Cooper, “Advancing Dental Implant Surface Technology—From Micronto Nanotopography,” Biomaterials, Vol. 29, No. 28, 2008, pp. 3822-3835.
[5] M. Morra, “Biochemical Modification of Titanium Surfaces: Peptides and ECM Proteins,” European Cells and Materials Journal, Vol. 12, 2006, pp. 1-15.
[6] L. T. de Jonge, S. C. Leeuwenburgh, J. G. Wolke and J. A. Jansen, “Organic-Inorganic Surface Modifications for Titanium Implant Surfaces,” Pharmaceutical Research, Vol. 25, No. 10, 2008, pp. 2357-2369.
[7] G. L. Le, A. Soueidan, P. Layrolle and Y. Amouriq, “Surface Treatments of Titanium Dental Implants for Rapid Osseointegration,” Dental Materials, Vol. 23, No. 7, 2007, pp. 844-854.
[8] R. Junker, A. Dimakis, M. Thoneick and J. A. Jansen, “Effects of Implant Surface Coatings and Composition on Bone Integration: A Systematic Review,” Clinical Oral Implants Research, Vol. 20, Suppl. 4, 2009, pp. 185-206.
[9] K. Gurzawska, R. Svava, N. R. Jørgensen and K. Gotfredsen, “Nanocoating of Titanium Implant Surfaces with Organic Molecules. Polysaccharides Including Glycosaminoglycans,” Journal of Biomedical Nanotechnology, Vol. 8, No. 6, 2012, pp. 1012-1024.
[10] H. Kokkonen, C. Cassinelli, R. Verhoef, M. Morra, H. A. Schols and J. Tuukkanen, “Differentiation of Osteoblasts on Pectin-Coated Titanium,” Biomacromolecules, Vol. 9, No. 9, 2008, pp. 2369-2376.
[11] H. E. Kokkonen, J. M. Ilvesaro, M. Morra, H. A. Schols and J. Tuukkanen, “Effect of Modified Pectin Molecules on the Growth of Bone Cells,” Biomacromolecules, Vol. 8, No. 2, 2007, pp. 509-515.
[12] A. Wennerberg and T. Albrektsson, “On Implant Surfaces: A Review of Current Knowledge and Opinions,” The International Journal of Oral & Maxillofacial Implants, Vol. 25, No. 1, 2010, pp. 63-74.
[13] C. Bussy, R. Verhoef, A. Haeger, M. Morra, J. L. Duval, P. Vigneron, et al., “Modulating in Vitro Bone Cell and Macrophage Behavior by Immobilized Enzymatically Tailored Pectins,” Journal of Biomedical Materials Research Part A, Vol. 86A, No. 3, 2008, pp. 597-606.
[14] K. Gurzawska, R. Svava, S. Syberg, Y. Yihua, K. B. Haugshoj, I. Damager, et al., “Effect of Nanocoating with Rhamnogalacturonan-I on Surface Properties and Osteoblasts Response,” Journal of Biomedical Materials Research Part A, Vol. 100, No. 3, 2012, pp. 654-664.
[15] H. Kokkonen, H. Niiranen, H. A. Schols, M. Morra, F. Stenback and J. Tuukkanen, “Pectin-Coated Titanium Implants Are Well-Tolerated in Vivo,” Journal of Biomedical Materials Research Part A, Vol. 93, No. 4, 2010, pp. 1404-1409.
[16] M. Morra, C. Cassinelli, G. Cascardo, M. D. Nagel, C. Della Volpe, S. Siboni, et al., “Effects on Interfacial Properties and Cell Adhesion of Surface Modification by Pectic Hairy Regions,” Biomacromolecules, Vol. 5, No. 6, 2004, pp. 2094-2104.
[17] M. D. Nagel, R. Verhoef, H. Schols, M. Morra, J. P. Knox, G. Ceccone, et al., “Enzymatically-Tailored Pectins Differentially Influence the Morphology, Adhesion, Cell Cycle Progression and Survival of Fibroblasts,” Biochimica et Biophysica Acta, Vol. 1780, No. 7, 2008, pp. 995-1003.
[18] A. Wennerberg and T. Albrektsson, “Suggested GuideLines for the Topographic Evaluation of Implant Surfaces,” The International Journal of Oral & Maxillofacial Implants, Vol. 15, No. 3, 2000, pp. 331-344.
[19] L. Cheng, P. Fenter, K. L. Nagy, M. L. Schlegel and N. C. Sturchio, “Molecular-Scale Density Oscillations in Water Adjacent to a Mica Surface,” Physical Review Letters, Vol. 87, No. 15, 2001, Article ID: 156103.
[20] T. Matsuura, H. Tanaka, T. Matsumoto and T. Kawai, “Atomic Force Microscopic Observation of Escherichia coli Ribosomes in Solution,” Bioscience, Biotechnology, and Biochemistry, Vol. 70, No. 1, 2006, pp. 300-302.
[21] C. H. Lui, L. Liu, K. F. Mak, G. W. Flynn, T. F. Heinz, “Ultraflat Graphene,” Nature, Vol. 462, No. 7271, 2009, pp. 339-341.
[22] K. T. Inngjerdingen, T. R. Patel, X. Chen, L. Kenne, S. Allen, G. A. Morris, et al., “Immunological and Structural Properties of a Pectic Polymer from Glinus opposetifolius,” Glycobiology, Vol. 17, No. 12, 2007, pp. 1299-1310.
[23] K. A. Gurzawska, R. Svava, Y. Yihau Dr., K. B. Haugshøj, K. Dirscherl, S. B. Levery, I. Byg, I. Damager, B. Jørgensen, N. R. Jørgensen and K. Gotfredsen, “Osteoblastic Response to Pectin Nanocoating of Titanium Surface,” Submitted, under Review.
[24] S. Tajima, J. S. Chu, S. Li and K. Komvopoulos, “Differential Regulation of Endothelial Cell Adhesion, Spreading, and Cytoskeleton on Low-Density Polyethylene by Nanotopography and Surface Chemistry Modification Induced by Argon Plasma Treatment,” Journal of Biomedical Materials Research Part A, Vol. 84, No. 3, 2008, pp. 828-836.
[25] F. Rupp, L. Scheideler, N. Olshanska, M. de Wild, M. Wieland and J. Geis-Gerstorfer, “Enhancing Surface Free Energy and Hydrophilicity through Chemical Modification of Microstructured Titanium Implant Surfaces,” Journal of Biomedical Materials Research Part A, Vol. 76A, No. 2, 2006, pp. 323-334.
[26] S. Tosatti, M. Textor and N. D. Spencer, “Self-Assembled Monolayer of Dodecyl and Hydroxy-Dodecyl Phosphate at Smooth and Rough Titanium and Titanium Oxide Surfaces,” Langmuir, Vol. 18, No. 9, 2002, pp 3537-3548.
[27] A. Bagno and B. C. Di, “Surface Treatments and Roughness Properties of Ti-Based Biomaterials,” Journal of Materials Science: Materials in Medicine, Vol. 15, No. 9, 2004, pp. 935-949.
[28] F. Munarin, S. G. Guerreiro, M. A. Grellier, M. C. Tanzi, M. A. Barbosa, P. Petrini, et al., “Pectin-Based Injectable Biomaterials for Bone Tissue Engineering,” Biomacromolecules, Vol. 12, No. 3, 2011, pp. 568-577.
[29] V. J. Morris, A. Gromer, A. R. Kirby, R. J. M. Bongaerts and A. Patrick Gunning, “Using AFM and Force SpecTroscopy to Determine Pectin Structure and (bio) Functionality,” Food Hydrocolloids, Vol. 25, No. 2, 2011, pp. 230-237.
[30] H. Kokkonen, R. Verhoef, K. Kauppinen, V. Muhonen, B. Jorgensen, I. Damager, et al., “Affecting Osteoblastic Responses with in Vivo Engineered Potato Pectin Fragments,” Journal of Biomedical Materials Research Part A, Vol. 100A, No. 1, 2012, pp. 111-119.
[31] A. P. Gunning, R. J. Bongaerts and V. J. Morris, “Recognition of Galactan Components of Pectin by Galectin-3,” The FASEB Journal, Vol. 23, No. 2, 2009, pp. 415-424.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.