Share This Article:

Microstructural Investigation of PM-355 Nuclear Track Detector Subjected to Low-Dose Gamma Irradiation: A Positron Annihilation Lifetime Study

Abstract Full-Text HTML XML Download Download as PDF (Size:1247KB) PP. 622-629
DOI: 10.4236/msa.2013.410076    3,666 Downloads   4,915 Views   Citations
Author(s)    Leave a comment

ABSTRACT

Samples of the PM-355 polymeric solid state nuclear track detector were exposed to low gamma absorbed doses from 1 kGy (0.1 Mrad) up to 9 kGy (0.9 Mrad). Positron annihilation lifetime (PAL) in conjunction with transmission electron microscopy (TEM) and Thermo-gravimetric analysis (TGA) were performed on irradiated and pristine samples at room temperature. The observed lifetime spectra were resolved into three components where the ortho-positronium (o-Ps) lifetime component was associated with the pick-off annihilation of positronium trapped by the free volume. PAL studies of irradiated PM-355 samples showed that ortho-positronium (o-Ps) lifetime increases with an increase in dose up to 4 kGy and decreases at higher doses. In contrast, the intensity of the o-Ps component, I3, decreases with the dose up to about 2 kGy, followed by a much smooth decrease up to 7 kGy, and then it levels off. TGA analysis indicated that the PM-355 detector decomposed in one main breakdown stage. These results are discussed on the basis of chemical and physical changes occurring at the microscopic level in the PM-355 due to irradiation. Crosslinking dominates for doses between 1 and 4 kGy, while the degradation mechanism (Chain scission) prevails for doses up to 9 kGy.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

E. Aly, "Microstructural Investigation of PM-355 Nuclear Track Detector Subjected to Low-Dose Gamma Irradiation: A Positron Annihilation Lifetime Study," Materials Sciences and Applications, Vol. 4 No. 10, 2013, pp. 622-629. doi: 10.4236/msa.2013.410076.

References

[1] M. Santosh, B. Dhananjay, A. Mandale, S. Gangal and V. Bhoraskar, “Electron Beam Induced surface Cross-Linking of Functional Monomers Coated on Silicon Substrate,” Materials Letters, Vol. 60, No. 11, 2006, pp. 1360-1365.
http://dx.doi.org/10.1016/j.matlet.2005.11.029
[2] S. A. Durrani, “Nuclear Tracks: A Success Story of the 20th Century,” Radiation Measurements, Vol. 34, No. 1-6, 2001, pp. 5-13.
http://dx.doi.org/10.1016/S1350-4487(01)00112-3
[3] W. Birkholz, C. Winkler and H. Baumbach, “Neutron Sensitivity of CR-39 SSNTD,” International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, Vol. 19, No. 1-4, 1991, pp. 453-456.
[4] J. Palfalvi, “Experiences with CR-39 SSNTD in Monitoring Neutrons Emitted from Spent Reactor Fuel,” International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, Vol. 19, No. 1-4, 1991, pp. 511-516.
[5] A. Gisbertz, M. Hochstrate, I. Koehler, E. Pitt and A. Scharmann, “Improvement of Response of SSNTD in Fast Neutron Dosimetry,” Radiation Measurements, Vol. 28, No. 1-6, 1997, pp. 489-494.
http://dx.doi.org/10.1016/S1350-4487(97)00126-1
[6] R. Pugliesi, M. Pereira, M. de-Moraes and M. de-Menezes, “Characteristics of the solid state nuclear detector CR-39 for neutron radiography purposes,” Applied Radiation and Isotopes, Vol. 50, No. 2, 1999, pp. 375-380.
http://dx.doi.org/10.1016/S0969-8043(98)00092-X
[7] M. A. Anan, “Impedance Spectroscopy of Gamma Irradiated PM-355,” Radiation Measurements, Vol. 41, No. 2, 2006, pp. 209-212.
http://dx.doi.org/10.1016/j.radmeas.2005.07.023
[8] S. A. Durrani and R. K. Bull, “Solid State Nuclear Track Detection. Principles, Methods and Applications,” Pergamon Press, Oxford, 1987.
[9] A. Szydlowski, “Application of CR-39 Track Detectors for Corpuscular Diagnostics of High-Temperature Plasmas,” Radiation Measurements, Vol. 36, No. 1-6, 2003, pp. 35-42.
http://dx.doi.org/10.1016/S1350-4487(03)00095-7
[10] A. Szydlowski, J. Badziak, J. Fuchs, M. Kubkowska, P. Parys, M. Rosinski, R. Suchanska, J. Wolowski, P. Antici and A. Mancic, “Application of Solid-State Nuclear Track Detectors of the CR-39/PM-355 Type for Measurements of Energetic Protons Emitted from Plasma Produced by an Ultra-Intense Laser,” Radiation Measurements, Vol. 44, No. 9-10, 2009, pp. 881-884.
http://dx.doi.org/10.1016/j.radmeas.2009.08.008
[11] M. Mujahid, P. Singh, D. S. Srivastava, S. Gupta, D. K. Avasthi and D. Kanjilal, “Study of Chain Scission versus Crosslinking in MeV Ion-Irradiated Polycarbonate Using Dielectric Constant Measurements and UV Spectroscopy,” Radiation Measurements, Vol. 38, No. 1-6, 2004, pp. 197-203.
[12] S. A. Nouh, “Physical Change Associated with Gamma Doses of PM-555 Solid-State Nuclear Track Detector,” Radiation Measurements, Vol. 38, No. 2, 2004, pp. 167-172. http://dx.doi.org/10.1016/j.radmeas.2003.11.004
[13] M. Fromm, F. Vaginary,G. Meesen, A. Chambundet and A. Poffijn, “Watching at the Correlation between the Specific Track-Etch Rate and the Primary Physical Parameters of the Swift Ion Interaction with the CR-39,” Radiation Measurements, Vol. 36, No. 1-6, 2003, pp. 93-98.
http://dx.doi.org/10.1016/S1350-4487(03)00101-X
[14] D. Sinha and K. K. Dwivedi, “Radiation-Induced Modification on Thermal Properties of Different Nuclear Track Detectors,” Radiation Measurements, Vol. 36, No. 1-6, 2003, pp. 713-718.
http://dx.doi.org/10.1016/S1350-4487(03)00232-4
[15] H. Nakanishi, Y. C. Jean and D. M. Schrader, “Positron and Positronium Chemistry,” Elsevier, Amsterdam, 1988.
[16] Q.Deng, C. S. Sunder and Y. C. Jean, “Pressure Dependence of Free-Volume Hole Properties in an Epoxy Polymer,” Journal of Physical Chemistry, Vol. 96, No. 1, 1992, pp. 492-495. http://dx.doi.org/10.1021/j100180a088
[17] O. E. Mogensen, “Positron Annihilation in Chemistry,” Springer-Verlag, Berlin, Heidelberg, New York, 1995.
http://dx.doi.org/10.1007/978-3-642-85123-0
[18] W. Brandt, S. Berko and W. Walker, “Positronium Decay in Molecular Substances,” Physical Review, Vol. 120, No. 4, 1960, pp. 1289-1295.
http://dx.doi.org/10.1103/PhysRev.120.1289
[19] H. S. Sodaye, P. K. Pujari, A. Goswami and S. B. Manohar, “Probing the Microstructure of Nafion-117 Using Positron Annihilation Spectroscopy,” Journal of Polymer Science Part B: Polymer Physics, Vol. 35, No. 5, 1997, pp. 771-776.
http://dx.doi.org/10.1002/(SICI)1099-0488(19970415)35:5<771::AID-POLB5>3.0.CO;2-P
[20] M. Eldrup, D. Lightbody and J. N. Sherwood, “The Temperature Dependence of Positron Lifetimes in Solid Pivalic Acid,” Chemical Physics, Vol. 63, No. 1-2, 1981, pp. 51-58. http://dx.doi.org/10.1016/0301-0104(81)80307-2
[21] H. Nakanishi, S. J. Wang, Y. C. Jean and S. C. Sharama, “Positron Annihilation Studies of Fluids,” World Scientific, Singapore, 1988, pp. 292-298.
[22] P. J. McNulty, S. R. Palmer and D. D. Cooke, “Optical Properties of Particle Tracks in SSNTD Detectors,” Proceedings of the 11th International Conference on SSNTD, Bristol, 7-12 September 1981, pp. 807-813.
[23] S. A. Durrani and R. K. Bull, “Solid State Nuclear Track Detection. Principles, Methods and Applications,” Pergamon Press, Oxford, 1987.
[24] M. Sharma, C. Kaur, S. K. Chandramani and P. C. Jain, “Temperature-Dependent Studies in Some Homologues of Alkyloxycyanobiphenyls Employing Positron Lifetime Measurements,” International Journal of Modern Physics, Vol. B14, No. 18, 2000, pp. 1927-1938.
[25] P. Kirkegaard, M. Eldrup, O. E. Mogensen and N. Pedersen, “Program System for Analysing Positron Lifetime Spectra and Angular Correlation Curves,” Computer Physics Communications, Vol. 23, No. 3, 1981, pp. 307-335. http://dx.doi.org/10.1016/0010-4655(81)90006-0
[26] S. J. Tao, “Positronium Annihilation in Molecular Substances,” Journal of Chemical Physics, Vol. 56, No. 11, 1972, pp. 5499-5510.
http://dx.doi.org/10.1063/1.1677067
[27] R. B. Gregory, “Free-Volume and Pore-Size Distributions Determined by PALS,” Journal of Applied Physics, Vol. 70, No. 9, 1991, pp. 4665-4670.
http://dx.doi.org/10.1063/1.349057
[28] J. Liu, Q. Deng and Y. C. Jean, “Free-Volume Distributions of Polystyrene Probed by Positron-AnnihilationComparison with Free-Volume Theories,” Macromolecules, Vol. 26, No. 26, 1993, pp. 7149-7155.
http://dx.doi.org/10.1021/ma00078a006
[29] N. Djourelov and M. Misheva, “Source Correction in Positron Annihilation Lifetime Spectroscopy,” Journal of Physics: Condensed Matter, Vol. 8, No. 12, 1996, pp. 2081-2087. http://dx.doi.org/10.1088/0953-8984/8/12/020
[30] G. Dlubek, J. Stejny, Th. Lu. Pke, D. Bamford, K. Petters, Ch. Hu. Bner, M. A. Alam and M. J. Hill, “Free-Volume Variation in Polyethylenes of Different Crystallinities: Positron Lifetime, Density, and X-Ray Studies,” Journal of Polymer Science Part B: Polymer Physics, Vol. 40, No. 1, 2002, pp. 65-81. http://dx.doi.org/10.1002/polb.10072
[31] O. Shpotyuk, A. Ingram, H. Klym, M. Vakiv, I. Hadzaman and J. Filipecki, “PAL Spectroscopy in Application to Humidity-Sensitive MgAl2O4 Ceramics,” Journal of the European Ceramic Society, Vol. 25, No. 12, 2005, pp. 2981-2984.
http://dx.doi.org/10.1016/j.jeurceramsoc.2005.03.174
[32] A. Barbu, A. Dunlop, D. A. Hardouin, G. Jaskierowicz and N. Lorenzelli, “Microstructural Modifications Induced by Swift Ions in the NiTi Intermetallic Compound,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 145, No. 3, 1998, pp. 354-372.
http://dx.doi.org/10.1016/S0168-583X(98)00408-X
[33] E. Goo, A. Murthy and C. J. D. Hetherington, “Preferential Amorphitization of NiTi Alloys at Twin Boundaries by Electron Irradiation,” Scripta Metallurgica et Materialia, Vol. 29, No. 4, 1993, pp. 553-555.
http://dx.doi.org/10.1016/0956-716X(93)90164-N
[34] A. M. Al-Karmi, “Impedance Spectroscopy of GammaIrradiated PM-355,” Radiation Measurements, Vol. 41, No. 2, 2006, pp. 209-212.
http://dx.doi.org/10.1016/j.radmeas.2005.07.023
[35] F. Abu-Jarad, A. M. Hala, M. Farhat and M. Islam, “Effect of High Gamma Dose on the PADC Properties,” Radiation Measurements, Vol. 28, No. 1-6, 1997, pp. 111-114.
[36] T. Suzuki, Y. Ito, K. Kondo, E. Hamada and Y. Ito, “Radiation Effect on Positronium Formation in Low-Temperature Polyethylene,” Radiation Physics and Chemistry, Vol. 58, No. 5-6, 2000, pp. 485-489.
http://dx.doi.org/10.1016/S0969-806X(00)00204-8
[37] T. Suzuki, T. Miura, Y. Oki, M. Numajiri, K. Kondo and Y. Ito, “Positron Irradiation Effects on Polypropylene and Polyethylene Studied by Positron Annihilation,” Radiation Physics and Chemistry, Vol. 45, No. 4, 1995, pp. 657-663.
http://dx.doi.org/10.1016/0969-806X(94)E0030-M
[38] J. F. Medel, F. Garcia-Alvarez, E. Gomez-Barrena and J. A. Puertolas, “Microstructure Changes of Extruded Ultra High Molecular Weight Polyethylene after Gamma Irradiation and Shelf-Aging,” Polymer Degradation and Stability, Vol. 88, No. 3, 2005, pp. 435-443.
http://dx.doi.org/10.1016/j.polymdegradstab.2004.11.015

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.