Share This Article:

MicroPath-A pathway-based pipeline for the comparison of multiple gene expression profiles to identify common biological signatures

Full-Text HTML Download Download as PDF (Size:1993KB) PP. 106-116
DOI: 10.4236/jbise.2009.22020    4,096 Downloads   7,862 Views  


High throughput gene expression analysis is swiftly becoming the focal point for deciphering molecular mechanisms underlying various dif-ferent biological questions. Testament to this is the fact that vast volumes of expression profiles are being generated rapidly by scientists worldwide and subsequently stored in publicly available data repositories such as ArrayEx-press and the Gene Expression Omnibus (GEO). Such wealth of biological data has motivated biologists to compare expression profiles gen-erated from biologically-related microarray ex-periments in order to unravel biological mecha-nisms underlying various states of diseases. However, without the availability of appropriate software and tools, they are compelled to use manual or labour-intensive methods of com-parisons. A scrutiny of current literature makes it apparent that there is a soaring need for such bioinformatics tools that cater for the multiple analyses of expression profiles. In order to contribute towards this need, we have developed an efficient software pipeline for the analysis of multiple gene expression data-sets, called Micropath, which implements three principal functions; 1) it searches for common genes amongst n number of datasets using a number crunching method of comparison as well as applying the principle of permutations and combinations in the form of a search strat-egy, 2) it extracts gene expression patterns both graphically and statistically, and 3) it streams co-expressed genes to all molecular pathways belonging to KEGG in a live fashion. We sub-jected MicroPath to several expression datasets generated from our tolerance-related in-house microarray experiments as well as published data and identified a set of 31 candidate genes that were found to be co-expressed across all interesting datasets. Pathway analysis revealed their putative roles in regulating immune toler-ance. MicroPath is freely available to download from:

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Khan, M. , Gorle, C. , Wang, P. , Liu, X. and Li, S. (2009) MicroPath-A pathway-based pipeline for the comparison of multiple gene expression profiles to identify common biological signatures. Journal of Biomedical Science and Engineering, 2, 106-116. doi: 10.4236/jbise.2009.22020.


[1] U. Sarkans, H. Parkinson, G. G. Lara, A. Oezcimen, A. Sharma, N. Abeygunawardena, S. Contrino, E. Holloway, P. Rocca- Serra, G. Mukherjee, M. Shojatalab, M. Kapushesky, S. A. San-sone, A. Farne, T. Rayner and A. Brazma. (2005) The ArrayEx-press gene expression database: a software engineering and im-plementation perspective. Bioinformatics 21(8): 1495- 1501.
[2] T. Barrett and R. Edgar. (2006) Mining Microarray Data at NCBI’s Gene Expression Omnibus (GEO). Methods Mol Biol 338: 175-190.
[3] D. Ghosh, Barette, T. R., Rhodes, D. and Chinnaiyan, A. M. (2003). Statistical issues and methods for meta-analysis of mi-croarray data, A case study in prostate cancer. Funct. Integr. Genomics 3, 180-188.
[4] D. R. Rhodes, T. R. Barrette, M. A. Rubin, D. Ghosh and A. M. Chinnaiyan, (2002). Meta-analysis of microarrays: Interstudy validation of gene expression profiles reveals pathway dysregu-lation in prostate cancer. Cancer Res. 62, 4427-4433.
[5] D. R. Rhodes, J. Yu, K. Shanker, N. Deshpande, R. Varambally, D. Ghosh, T. Barrette, A. Pandey and A. M. Chinnaiyan (2004). Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc. Natl. Acad. Sci. USA 101, 9309-9314.
[6] J. Wang, K. R. Coombes, W. E. Highsmith, M. J. Keating and L. V. Abruzzo (2004). Differences in gene expression between B-cell chronic lymphocytic leukemia and normal B cells: A meta-analysis of three microarray studies. Bioinformatics 20, 3166-3178.
[7] S. Draghici, P. Khatri, A. L. Tarca, K. Amin, A. Done, C. Voichita, C. Georgescu and Romero, R. (2007). A systems biol-ogy approach for pathway level analysis. Genome Res. 17, 1537-1545.
[8] J. Stelling, (2004). Mathematical models in microbial systems biology. Curr. Opin. Microbiol. 7, 513-518.
[9] G. Joshi-Tope, M. Gillespie, I. Vasrik, P. D’Eustachio, E. Schmidt, B. de Bone, B. Jassal, G. R. Gopinath, G. R. Wu, L. Matthews, et al. (2005). A knowledgebase of biological path-ways. Nucleic Acids Res. 33, D428-D432.
[10] A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, et al. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide ex-pression profiles. Proc. Natl. Acad. Sci. 102: 15545-15550.
[11] S. Khalid, F. Fraser, M. Khan, P. Wang, X. Liu and S. Li, (2006a). Analysing Microarray Data using the Multi-functional Immune Ontologiser. J. Integrative Bioinformatics 3, 25.
[12] S. Khalid, M. Khan, P. Wang, X. Liu and S. -L. Li, (2006b). Application of bioinformatics in the design of gene expression microarrays. Second International Symposium on Leveraging Applications of Formal Methods, Verification and Validation (isola 2006), pp. 146-160.
[13] M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno and M. Hattori, (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res, 32.
[14] K. J. Bussey, D. Kane, M. Sunshine, S. Narasimhan, S. Nishi-zuka, W. C. Reinhold, B. Zeeberg, W. Ajay and J. N. Weinstein, (2003) MatchMiner: a tool for batch navigation among gene and gene product identifiers. Genome Biology. 4, R27.
[15] G. F. Berriz and F. P. Roth, The Synergizer service for translat-ing gene, protein, and other biological identifiers. (2008). Bio-informatics. [Epub ahead of print].
[16] GenePix pro 4.1:
[17] Acuity 4.0: gn_acuity.html
[18] M. Safford, S. Collins, M. A. Lutz, A. Allen, C. Huang, J. Kowalski, A. Blackford, M. R. Horton, C. Drake, R. H. Schwartz and J. D. Powell, (2005) Egr-2 and Egr-3 are negative regulators of T cell activation. Nature Immunology 6 472-480.
[19] L. E. Warner, J. Svaren, J. Milbrandt and J. R. Lupski, (1999) Functional consequences of mutations in the early growth re-sponse 2 gene (EGR2) correlate with severity of human myeli-nopathies. Hum. Mol. Genet. 8 1245-1251.
[20] P. O. Anderson, B. A. Manzo, A. Sundstedt, S. Minaee, A. Sy-monds, S. Khalid, M. E. Rodriguez-Cabezas, K. Nicolson, S. Li, D. C. Wraith and P. Wang, (2006) Persistent antigenic stimula-tion alters the transcription program in T cells, resulting in anti-gen-specific tolerance. European Journal of Immunology. 36, 1374-85.
[21] H. Kuipers, F. Muskens, M. Willart, D. Hijdra, F. B. van As-sema, A. J. Coyle, H. C. Hoogsteden and B. N. Lambrecht (2006). Contribution of the PD-1 ligands/PD-1 signaling path-way to dendritic cell-mediated CD4 (+) T cell activation. Euro-pean Journal of Immunology. 36 (9), 2472-82.
[22] Y. Zhang, Y. Chung, C. Bishop, B. Daugherty, H. Chute, P. Holst, C. Kurahara, F. Lott, N. Sun, A. A. Welcher and C. Dong, (2006). Regulation of T cell activation and tolerance by PDL2. Proc Natl Acad Sci U S A, 103(31), 11695-11700.
[23] X. Li, K. Dou, H. Liu, F. Zhang and L. Cai, (2007). Immune tolerance induced by IL-10 and methylprednisolone modified dendritic cells in vitro. Chinese Journal of cellular and molecular Immunol. 23 (5), 436-8.
[24] R. Shamir, A. Maron-Katz, A. Tanay, C. Linhart, I. Steinfeld, R. Sharan, Y. Shiloh and R. Elkon, (2005) EXPANDER-an integra-tive program suite for microarray data analysis. BMC Bioinfor-matics, 6: 232.
[25] G. Thijs, Y. Moreau, F. D. Smet, J. Mathys, M. Lescot, S. Rom-bauts, P. Rouze, B. D. Moor and K. Marchal, (2002) INCLUSive: Integrated Clustering, Upstream sequence retrieval and motif Sampling. Bioinformatics, 18, 331-332.
[26] A. Nikitin, S. Egorov, N. Daraselia and I. Mazo,. (2003) Path-way studio-the analysis and navigation of molecular networks. Bioinformatics, 19, 2155-2157.
[27] BioCarta, Charting pathways of life.
[28] S. Khalid, M. Khan, C. B. Gorle, K. Fraser, P. Wang, X. Liu and S. Li, MaXlab: A novel application for the cross comparison and integration of biological signatures from microarray studies. In Silico Biology 8, 0029: 2008.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.