A Comparison of the Ghost Cell Technique for Front Tracking Method


The treatment of moving material interfaces and their vicinity is very important for compressible multifluids. In this paper, we propose one type of ghost fluid method based on Riemann solutions for front tracking method. The accuracy of the interface boundary condition is discussed for the gas-gas Riemann problem. It is shown that the solution of the ghost fluid method approximates the exact solution to second-order accuracy in the sense of comparing to the exact solution of a Riemann problem at the material interface. Numerical examples suggest that the present scheme is able to handle multifluids problems with large density differences and has the property of reduced conservation error.

Share and Cite:

D. Wang, Y. Wang and N. Zhao, "A Comparison of the Ghost Cell Technique for Front Tracking Method," Open Journal of Fluid Dynamics, Vol. 3 No. 3, 2013, pp. 163-170. doi: 10.4236/ojfd.2013.33021.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. Hirt and B. Nichols, “Volume of fluid (VOF) Method for the Dynamics of Free Boundaries,” Journal of Com- putational Physics, Vol. 39, No. 1, 1981, pp. 201-225. doi:10.1016/0021-9991(81)90145-5
[2] D. Adalsteinsson and J. A. Sethian, “A Fast Level Set Method for Propagating Interfaces,” Journal of Computational Physics, Vol. 118, 1995, pp. 269-277. doi:10.1006/jcph.1995.1098
[3] H. Terashima and G. Tryggvason, “A Front-Tracking/ Ghost-Fluid Method for Fluid Interfaces in Compressible Flows,” Journal of Computational Physics, Vol. 228, No. 11, 2009, pp. 4012- 4037. doi:10.1016/j.jcp.2009.02.023
[4] R. P. Fedkiw, T. Aslam, B. Merriman and S. Osher, “A Non-Oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method),” Journal of Computational Physics, Vol. 152, No. 2, 1999, pp. 457- 492. doi:10.1006/jcph.1999.6236
[5] T. G. Liu, B. C. Khoo and K. S. Yeo, “Ghost Fluid Method for Strong Shock Impacting on Material Interface,” Journal of Computational Physics, Vol. 190, No. 2, 2003, pp. 651-681. doi:10.1016/S0021-9991(03)00301-2
[6] X. Y. Hu and B. C. Khoo, “An Interface Interaction Method for Compressible Multifluids,” Journal of Computational Physics, Vol. 198, No. 1, 2004, pp. 35-64. doi:10.1016/j.jcp.2003.12.018
[7] T. G. Liu, B. C. Khoo and C. W. Wang, “The Ghost Fluid Method for Compressible Gas-Water Simulation,” Journal of Computational Physics, Vol. 204, No. 1, 2005, pp. 193-221. doi:10.1016/j.jcp.2004.10.012
[8] C. W. Wang, T. G. Liu and B. C. Khoo, “A Real Ghost Fluid Method for the Simulation of Multimedium Compressible Flow,” Journal on Scientific Computing, Vol. 28, No. 1, 2006, pp. 278-302.
[9] Y. Hao and A. Prosperetti, “A Numerical Method for Three-Dimensional Gas-Liquid Flow Computations,” Journal of Computational Physics, Vol. 196, No. 1, 2004, pp. 126-144. doi:10.1016/j.jcp.2003.10.032
[10] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. A. Rawahi, W. Tauber, J. Han, S. Nas and Y. J. Jan, “A Front Tracking Method for the Computations of Multiphase Flow,” Journal of Computational Physics, Vol. 169, No. 2, 2001, pp. 708-759. doi:10.1006/jcph.2001.6726
[11] D. H.Wang, N. Zhao, O. Hu and J. M. Lui, “A Ghost Fluid Based Front Tracking Method for Multimedium Compressible Flows,” Acta Mathematica Sinica, Vol. 29B, No. 6, 2009, pp. 1629-1646.
[12] J. Glimm, J. Grove, X. L. Li and N. Zhao, “Simple Front Tracking,” Contemporary Mathematics, Vol. 238, 1999, pp. 133-149. doi:10.1090/conm/238/03544
[13] T. G. Liu and B. C. Khoo, “The Accuracy of the Modified Ghost Fluid Method for Gas-Gas Riemann Problem,” Applied Numerical Mathematics, Vol. 57, No. 5-7, 2007, pp. 721-733.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.