Generation of Unfolded DNA in Human Neutrophils Following Hypothermal Treatment

Abstract

By visualizing DNA with diamidino phenylindole (DAPI), we found that hypothermal incubation followed by rewarming of human neutrophils resulted in an increased number of DAPI-positive objects representative of extensive DNA unfolding seemingly similar to neutrophil extracellular traps (NETs). In contrast to canonical NET formation, diphenylene iodonium (DPI), an NADPH oxidase inhibitor, exhibited negligible effects on formation of the DAPI-positive objects. Moreover, multiple instances of DNA damage were detected in the objects, but not in canonical NETs. Our results thus suggest the potential of hypothermia for triggering DNA structural alteration in neutrophils, which is similar to but distinct from NET formation.

Share and Cite:

Kawata, J. , Kikuchi, M. and Saitoh, H. (2013) Generation of Unfolded DNA in Human Neutrophils Following Hypothermal Treatment. CellBio, 2, 117-124. doi: 10.4236/cellbio.2013.23013.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. Kruuv, D. Glofcheski, K. H. Cheng, S. D. Campbell, H. M. Al-Qysi, W. T. Nolan and J. R. Lepock, “Factors In- fluencing Survival and Growth of Mammalian Cells Exposed to Hypothermia. I. Effects of Temperature and Membrane Lipid Perturbers,” Journal of Cellular Physiology, Vol. 115, No. 2, 1983, pp. 179-185. doi:10.1002/jcp.1041150212
[2] P. W. Hochachka, “Defense Strategies against Hypoxia and Hypothermia,” Science, Vol. 231, No. 4735, 1986, pp. 234-241. doi:10.1126/science.2417316
[3] N. Borregaard, “Neutrophils, From Marrow to Microbes,” Immunity, Vol. 33, No. 5, 2010, pp. 657-670. doi:10.1016/j.immuni.2010.11.011
[4] B. Amulic, C. Cazalet, G. L. Hayes, K. D. Metzler and A. Zychlinsky, “Neutrophil Function: From Mechanisms to Disease,” Annual Reviews: Annual Review of Immunology, Vol. 30, 2012, pp. 459-489. doi:10.1146/annurev-immunol-020711-074942
[5] V. Brinkmann, U. Reichard, C. Goosmann, B. Fauler, Y. Uhlemann, D. S. Weiss, Y. Weinrauch and A. Zychlinsky, “Neutrophil Extracellular Traps Kill Bacteria,” Science, Vol. 303, No. 5663, 2004, pp. 1532-1535. doi:10.1126/science.1092385
[6] B. E. Steinberg and S. Grinstein, “Unconventional Roles of the NADPH Oxidase: Signaling, Ion Homeostasis, and Cell Death,” Science’s STKE, Vol. 2007, No. 379, 2007, p. 11. doi:10.1126/stke.3792007pe11
[7] V. Brinkmann and A. Zychlinsky, “Neutrophil Extracellular Traps: Is Immunity the Second Function of Chromatin?” Journal of Cellular Physiology, Vol. 198, No. 5, 2012, pp. 773-783. doi:10.1083/jcb.201203170
[8] S. R. Clark, A. C. Ma, S. A. Tavener, B. McDonald, Z. Goodarzi, M. M. Kelly, K. D. Patel, S. Chakrabarti, E. McAvoy, G. D. Sinclair, E. M. Keys, E. Allen-Vercoe, R. Devinney, C. J. Doig, F. H. Green and P. Kubes, “Platelet TLR4 Activates Neutrophil Extracellular Traps to Ensnare Bacteria in Septic Blood,” Nature Medicine, Vo. 13, No. 4, 2007, pp. 463-469. doi:10.1038/nm1565
[9] K. Kessenbrock, M. Krumbholz, U. Schonermarck, W. Back, W. L. Gross, Z. Werb, H. J. Grone, V. Brinkmann and D. E. Jenne, “Netting Neutrophils in Autoimmune Small-Vessel Vasculitis,” Nature Medicine, Vol. 15, No. 6, 2009, pp. 623-625. doi:10.1038/nm.1959?
[10] G. S. Garcia-Romo, S. Caielli, B. Vega, J. Connolly, F. Allantaz, Z. Xu, M. Punaro, J. Baisch, C. Guiducci, R. L. Coffman, F. J. Barrat, J. Banchereau and V. Pascual, “Netting Neutrophils Are Major Inducers of Type I IFN Production in Pediatric Systemic Lupus Erythematosus,” Science Translational Medicine, Vol. 3, No. 73, 2011, p. 73ra20. doi:10.1126/scitranslmed.3001201
[11] R. Lande, D. Ganguly, V. Facchinetti, L. Frasca, C. Conrad, J. Gregorio, S. Meller, G. Chamilos, R. Sebasigari, V. Riccieri, R. Bassett, H. Amuro, S. Fukuhara, T. Ito, Y. J. Liu and M. Gilliet, “Neutrophils Activate Plasmacytoid Dendritic Cells by Releasing Self-DNA-Peptide Complexes in Systemic Lupus Erythematosus,” Science Translational Medicine, Vol. 3, No. 73, 2011, p. 73ra19. doi:10.1126/scitranslmed.3001180
[12] T. Saitoh, J. Komano, Y. Saitoh, T. Misawa, M. Takahama, T. Kozaki, T. Uehata, H. Iwasaki, H. Omori, S. Yamaoka, N. Yamamoto and S. Akira, “Neutrophil Exracellular Traps Mediate a Host Defense Response to Human Immunodeficiency Virus-1,” Cell Host Microbe, Vol. 12, No. 1, 2012, pp. 109-116. doi:10.1016/j.chom.2012.05.015
[13] I. Neeli, N. Dwivedi, S. Khan and M. Radic, “Regulation of Extracellular Chromatin Release from Neutrophils,” Journal of Innate Immunity, Vol. 1, No. 3, 2009, pp. 194-201. doi:10.1159/000206974
[14] M. B. Lim, J. W. Kuiper, A. Katchky, H. Goldberg and M. Glogauer, “Rac2 is Required for the Formation of Neutrophil Extracellular Traps,” Journal of Leukocyte Biology, Vol. 90, No. 4, 2011, pp. 771-776. doi:10.1189/jlb.1010549
[15] T. A. Fuchs, U. Abed, C. Goosmann, R. Hurwitz, I. Schulze, V. Wahn, Y. Weinrauch, V. Brinkmann and A. Zychlinsky, “Novel Cell Death Program Leads to Neutrophil Extracellular Traps,” The Journal of Cell Biology, Vol. 176, No. 2, 2007, pp. 231-241. doi:10.1083/jcb.200606027
[16] M. Bianchi, A. Hakkim, V. Brinkmann, U. Siler, R. A. Seger, A. Zychlinsky and J. Reichenbach, “Restoration of NET Formation by Gene Therapy in CGD Controls Aspergillosis,” Blood, Vol. 114, No. 13, 2009, pp. 2619- 2622. doi:10.1182/blood-2009-05-221606
[17] A. Hakkim, T. A. Fuchs, N. E. Martinez, S. Hess, H. Prinz, A. Zychlinsky and H. Waldmann, “Activation of the Raf-MEK-ERK Pathway Is Required for Neutrophil Extracellular Trap Formation,” Nature Chemical Biology, Vol. 7, No. 2, 2011, pp. 75-77. doi:10.1038/nchembio.496
[18] B. V. O’Donnell, D. G. Tew, O. T. Jones and P. J. England, “Studies on the Inhibitory Mechanism of Iodonium Compounds with Special Reference to Neutrophil NADPH Oxidase,” Biochemical Journal, Vol. 290, No. 1, 1993, pp. 41-49.
[19] Q. Remijsen, T. Vanden Berghe, E. Wirawan, B. Asselbergh, E. Parthoens, R. De Rycke, S. Noppen, M. Delforge, J. Willems and P. Vandenabeele, “Neutrophil Extracellular Trap Cell Death Requires Both Autophagy and Superoxide Generation,” Cell Research, Vol. 21, No. 2, 2011, pp. 290-304. doi:10.1038/cr.2010.150
[20] I. Neeli, S. N. Khan and M. Radic, “Histone Deimination as a Response to Inflammatory Stimuli in Neutrophils,” The Journal of Immunology, Vol. 180, No. 3, 2008, pp. 1895-1902.
[21] Y. Wang, M. Li, S. Stadler, S. Correll, P. Li, D. Wang, R. Hayama, L. Leonelli, H. Han, S. A. Grigoryev, C. D. Allis and S. A. Coonrod, “Histone Hypercitrullination Mediates Chromatin Decondensation and Neutrophil Extracellular Trap Formation,” The Journal of Cell Biology, Vol. 184, No. 2, 2009, pp. 205-213. doi:10.1083/jcb.200806072
[22] M. Maryanovich and A. Gross, “A ROS Rheostat for Cell Fate Regulation,” Trends in Cell Biology, Vol. 23, No. 3, 2013, pp. 129-134. doi:10.1016/j.tcb.2012.09.007
[23] L. Yunbo and A. Michael, “Diphenyleneiodonium, an NAD(P)H Oxidase Inhibitor, Also Potently Inhibits Mitochondrial Reactive Oxygen Species Production,” Biochemical and Biophysical Research Communications, Vol. 253, No. 2, 1998, pp. 295-299. doi:10.1006/bbrc.1998.9729

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.