Share This Article:

TET2 Mutations in Ph-Negative-Myeloproliferative Neoplasms: Identification of Three Novel Mutations and Relationship with Clinical and Laboratory Findings

Full-Text HTML Download Download as PDF (Size:108KB) PP. 79-84
DOI: 10.4236/ojbd.2013.33017    2,996 Downloads   4,195 Views   Citations

ABSTRACT

High-throughput DNA sequence analysis was used to screen for TET2 mutations in peripheral blood derived DNA from 97 patients with BCR-ABL-negative-myeloproliferative neoplasms (MPNs). Overall six mutations in the coding region of the gene were identified in 7 patients with an overall mutational frequency of 7.2%. In polycythemia vera patients (n = 25) were identified 2 mutations (8%); in those with essential thrombocythemia (n = 55) 2 mutations (3.6%); in those with unclassifiable MPN (n = 8) 3 mutations (37.5%). No primary myelofibrosis patiens (n = 6) harboured TET2 mutations. Three unreported mutations were identified (p.P177fs, p.C1298del, p.P411del) the first two in patients with unclassifiable MPN, the last in a patient with essential thrombocythemia. On multivariate analysis the diagnosis of an unclassifiable MPN was significantly related to the presence of TET2 mutations (p = 0.02; OR: 2.81; 95% CI 1.11 - 7.06). We conclude that TET2 mutations occur in both JAK2V617F-positive and -negative MPN and are more frequent in MPN-U patients. This could represent the biological link between the different classes of myeloid malignancies.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Patriarca, D. Colaizzo, G. Tiscia, R. Spadano, S. Zacomo, A. Spadano, I. Villanova, M. Margaglione, E. Grandone and A. Dragani, "TET2 Mutations in Ph-Negative-Myeloproliferative Neoplasms: Identification of Three Novel Mutations and Relationship with Clinical and Laboratory Findings," Open Journal of Blood Diseases, Vol. 3 No. 3, 2013, pp. 79-84. doi: 10.4236/ojbd.2013.33017.

References

[1] A. Tefferi and W. Vainchenker, “Myeloproliferative Neoplasms: Molecular Pathophysiology, Essential Clinical Understanding, and Treatment Strategies,” JCO, Vol. 29, No. 5, 2011, pp. 573-582. http://dx.doi.org/10.1200/JCO.2010.29.8711
[2] O. Abdel-Wahab, A. Mullally, C. Hedvat, G. Garcia-Manero, J. W. M. Patel, M. Wadleigh, et al., “Genetic Characterization of TET1, TET2, and TET3 Alterations in Myeloid Malignancies,” Blood, Vol. 114, No. 1, 2009, pp. 144-147. http://dx.doi.org/10.1182/blood-2009-03-210039
[3] F. Delhommeau, S. Dupont, V. Della Valle, C. James, S. Trannoy, A. Massé, et al., “Mutation in TET2 in Myeloid Cancers,” The New England Journal of Medicine, Vol. 360, 2009, pp. 2289-2301. http://dx.doi.org/10.1056/NEJMoa0810069
[4] L. Couronné, E. Lippert, J. Andrieux, O. Kosmider, I. Radford-Weiss, D. Penther, et al., “Analyses of TET2 Mutations in Post-Myeloproliferative Neoplasm Acute Myeloid Leukemias,” Leukemia, Vol. 24, No. 1, 2009, pp. 201-203.
[5] S. M. Langemeijer, R. P. Kuiper, M. Berends, R. Knops, M. G. Aslanyan, M. Massop, et al., “Acquired Mutations in TET2 Are Common in Myelodysplastic Syndromes,” Nature Genetics, Vol. 41, 2009, pp. 838-842. http://dx.doi.org/10.1038/ng.391
[6] A. Tefferi, A. Pardanani, K. H. Lim, O. Abdel-Wahab, T. L. Lasho, J. Patel, et al., “TET2 Mutations and Their Clinical Correlates in Polycythemia Vera, Essential Thrombocythemia and Myelofibrosis,” Leukemia, Vol. 23, 2009, pp. 905-911. http://dx.doi.org/10.1038/leu.2009.47
[7] A. Tefferi, R. L. Levine, K. H. Lim, O. Abdel-Wahab, T. L. Lasho, J. Patel, et al., “Frequent TET2 Mutations in Systemic Mastocytosis: Clinical, KITD816V and FIP1L1- PDGFRA Correlates,” Leukemia, Vol. 23, 2009, pp. 900-904. http://dx.doi.org/10.1038/leu.2009.37
[8] A. Tefferi, K. H. Lim, O. Abdel-Wahab, T. L. Lasho, J. Patel, M. M. Patnaik, et al., “Detection of Mutant TET2 in Myeloid Malignancies Other Than Myeloproliferative Neoplasms: CMML, MDS, MDS/MPN and AML,” Leukemia, Vol. 23, 2009, pp. 1343-1345. http://dx.doi.org/10.1038/leu.2009.59
[9] A. Wahab, “Genetics of the Myeloproliferative Neoplasms,” Current Opinion in Hematology, Vol. 18, 2011, pp. 117-123. http://dx.doi.org/10.1097/MOH.0b013e328343998e
[10] A. Tefferi and J. M. Vardiman, “Classification and Diagnosis of Myeloproliferative Neoplasms: The 2008 World Health Organization Criteria and Point-of-Care Diagnostic Algorithms,” Leukemia, Vol. 22, 2008, pp. 14-22. http://dx.doi.org/10.1038/sj.leu.2404955
[11] A. Patriarca, F. Pompetti, R. Malizia, O. Iuliani, I. Di Marzio, A. Spadano, et al., “Is the Absence of JAK2 Mutation a Risk Factor for Bleeding in Essential Thrombocythemia? An Analysis of 106 Patients,” Bloodtransfusion, Vol. 8, 2010, pp. 21-27.
[12] F. Nguyen-Khac, C. Lesty, V. Eclache, L. Couronnè, O. Kosmider, J. Andrieux, et al., “Chromosomal Abnormalities in Transformed Ph-Negative Myeloproliferative Neo- plasms are Associated to the Transformation Subtype and Independent of JAK2 and the TET2 Mutations,” Genes, Chromosomes & Cancer, Vol. 49, No. 10, 2010, pp. 919-927. http://dx.doi.org/10.1002/gcc.20802
[13] C. Saint-Martin, G. Leroy, F. Delhommeau, G. Panelatti, S. Dupont, C. James, et al., “Analysis of the Ten-Eleven Translocation 2 (TET2) Gene in Familial Myeloproliferative Neoplasms,” Blood, Vol. 114, No. 8, 2009, pp. 1628-1632. http://dx.doi.org/10.1182/blood-2009-01-197525
[14] O. Kosmider, V. Gelsi-Boyer, M. Ciudad, C. Racoeur, V. Jooste, N. Vey, et al., “TET2 Gene Mutation Is a Frequent and Adverse Event in Chronic Myelomonocytic Leukemia,” Haematologica, Vol. 94, No. 12, 2009, pp. 1676-1681. http://dx.doi.org/10.3324/haematol.2009.011205
[15] A. Kohlmann, H. U. Klein, S. Weissmann, S. Bresolin, T. Chaplin, H. Cuppens, et al., “The Interlaboratory Robustness of Next-Generation Sequencing (IRON) Study: A Deep Sequencing Investigation of TET2, CBL and KRAS Mutations by an International Consortium Involving 10 Laboratories,” Leukemia, Vol. 25, 2011, pp. 1840-1848. http://dx.doi.org/10.1038/leu.2011.155
[16] M. T. Voso, E. Fabiani, A. Piciocchi, C. Matteucci, L. Brandimarte, C. Finelli, et al., “Role of BCL2L10 Methylation and TET2 Mutations in Higher Risk Myelodysplastic Syndromes Treated with 5-Azacytidine,”?Leukemia, Vol. 25, 2011, pp. 1910-1913. http://dx.doi.org/10.1038/leu.2011.170
[17] M. Ko, Y. Huang, A. M. Jankowska, U. J. Pape, M. Tahiliani, H. S. Bandukwala, et al., “Impaired Hydroxylation of 5-Methylcytosine in Myeloid Cancers with Mutant TET2,”?Nature, Vol. 468, 2010, pp. 839-843. http://dx.doi.org/10.1038/nature09586
[18] D. A. Pollyea, A. Raval, B. Kusler, J. R. Gotlib, A. A. Alizadeh and B. S. Mitchell, “Impact of TET2 Mutations on mRNA Expression and Clinical Outcomes in MDS Patients Treated with DNA Methyltransferase Inhibitors,” Hematological Oncology, Vol. 29, No. 3, 2011, pp. 157-160. http://dx.doi.org/10.1002/hon.976
[19] H. Szpurka, A. M. Jankowska, H. Makishima, J. Bodo, N. Bejanyan, E. D. His, et al., “Spectrum of Mutations in RARS-T Patients Includes TET2 and ASXL1 Mutations,” Leukemia Research, Vol. 34, No. 8, 2010, pp. 969-973. http://dx.doi.org/10.1016/j.leukres.2010.02.033
[20] A. M. Jankowska, H. Szpurka, R. V. Tiu, H. Makishima, M. Afable, J. Huh, et al., “Loss of Heterozygosity 4q24 and TET2 Mutations Associated with Myelodysplastic/ Myeloproliferative Neoplasms,” Blood, Vol. 113, No. 25, 2009, pp. 6403-6410. http://dx.doi.org/10.1182/blood-2009-02-205690
[21] D. Olcaydu, E. Rumi, A. Harutyunyan, F. Passamonti, D. Pietra, C. Pascutto, et al., “The Role of the JAK2 GGCC Haplotype and the TET2 Gene In Familial Myeloproliferative Neoplasms,” Haematologica, Vol. 96, No. 3, 2011, pp. 367-374. http://dx.doi.org/10.3324/haematol.2010.034488

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.