Share This Article:

Diabetic cardiomyopathy—What do we know about it?

Abstract Full-Text HTML Download Download as PDF (Size:120KB) PP. 26-32
DOI: 10.4236/wjcd.2013.35A005    3,817 Downloads   5,891 Views   Citations

ABSTRACT

Diabetic cardiomyopathy is defined as the presence of myocardial dysfunction in patients with diabetes in the absence of coronary artery disease, hypertension, or other known cardiac disease. Diabetes has been shown to affect the heart through various cellular mechanisms leading to enhanced myocardial fibrosis, left ventricular hypertrophy, systolic and diastolic dysfunction. With increasing incidence of type II diabetes mellitus, it has continuously rising health and financial implications in both developed and developing countries. Hyperglycaemia seems to be the main deriving force, and careful glycaemic control as well as early administration of neurohormonal antagonists currently remains the mainstay of therapy. Many newer treatment targets are currently being explored. Here we present a brief review of its pathophysiology, association with heart failure symptoms, and management strategies.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Asrar ul Haq, M. , Mutha, V. , Rudd, N. and Wong, C. (2013) Diabetic cardiomyopathy—What do we know about it?. World Journal of Cardiovascular Diseases, 3, 26-32. doi: 10.4236/wjcd.2013.35A005.

References

[1] Marwick, T.H. (2008) Diabetic heart disease. Postgraduate Medical Journal, 84, 188-192. doi:10.1136/hrt.2005.067231
[2] Aneja, A., et al. (2008) Diabetic cardiomyopathy: Insights into pathogenesis, diagnostic challenges, and therapeutic options. American Journal of Medicine, 121, 748-757. doi:10.1016/j.amjmed.2008.03.046
[3] Aronow, W.S. and Ahn, C. (1999) Incidence of heart failure in 2737 older persons with and without diabetes mellitus. Chest, 115, 867-868. doi:10.1378/chest.115.3.867
[4] Bella, J.N., et al. (2001) Separate and joint effects of systemic hypertension and diabetes mellitus on left ventricular structure and function in American Indians (the Strong Heart Study). American Journal of Cardiology, 87, 1260-1265. doi:10.1016/S0002-9149(01)01516-8
[5] Bertoni, A.G., et al. (2006) Diabetic cardiomyopathy and subclinical cardiovascular disease: The Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care, 29, 588-594. doi:10.2337/diacare.29.03.06.dc05-1501
[6] Bertoni, A.G., et al. (2003) Diabetes and idiopathic cardiomyopathy: A nationwide case-control study. Diabetes Care, 26, 2791-2795. doi:10.2337/diacare.26.10.2791
[7] Nichols, G.A., et al. (2001) Congestive heart failure in type 2 diabetes: Prevalence, incidence, and risk factors. Diabetes Care, 24, 1614-1619. doi:10.2337/diacare.24.9.1614
[8] Kannel, W.B., Hjortland, M. and Castelli, W.P. (1974) Role of diabetes in congestive heart failure: The Framingham study. American Journal of Cardiology, 34, 29-34. doi:10.1016/0002-9149(74)90089-7
[9] Iribarren, C., et al. (2001) Glycemic control and heart failure among adult patients with diabetes. Circulation, 103, 2668-2673. doi:10.1161/01.CIR.103.22.2668
[10] Boyer, J.K., et al. (2004) Prevalence of ventricular diastolic dysfunction in asymptomatic, normotensive patients with diabetes mellitus. American Journal of Cardiology, 93, 870-875. doi:10.1016/j.amjcard.2003.12.026
[11] Barrett-Connor, E. and Ferrara, A. (1998) Isolated postchallenge hyperglycemia and the risk of fatal cardiovascular disease in older women and men. The Rancho Bernardo Study. Diabetes Care, 21, 1236-1239. doi:10.2337/diacare.21.8.1236
[12] Lowe, L.P., et al. (1997) Diabetes, asymptomatic hyperglycemia, and 22-year mortality in black and white men. The Chicago Heart Association Detection Project in Industry Study. Diabetes Care, 20, 163-169. doi:10.2337/diacare.20.2.163
[13] Barzilay, J.I., et al. (1994) Coronary artery disease and coronary artery bypass grafting in diabetic patients aged > or = 65 years (report from the Coronary Artery Surgery Study [CASS] Registry). American Journal of Cardiology, 74, 334-339. doi:10.1016/0002-9149(94)90399-9
[14] Waller, B.F., et al. (1980) Status of the coronary arteries at necropsy in diabetes mellitus with onset after age 30 years. Analysis of 229 diabetic patients with and without clinical evidence of coronary heart disease and comparison to 183 control subjects. American Journal of Medicine, 69, 498-506. doi:10.1016/S0149-2918(05)80002-5
[15] Granger, C.B., et al. (1993) Outcome of patients with diabetes mellitus and acute myocardial infarction treated with thrombolytic agents. The Thrombolysis and Angioplasty in Myocardial Infarction (TAMI) Study Group. Journal of the American College of Cardiology, 21, 920-925. doi:10.1016/0735-1097(93)90348-5
[16] Mueller, H.S., et al. (1992) Predictors of early morbidity and mortality after thrombolytic therapy of acute myocardial infarction. Analyses of patient subgroups in the Thrombolysis in Myocardial Infarction (TIMI) trial, phase II. Circulation, 85, 1254-1264. doi:10.1161/01.CIR.85.4.1254
[17] Stein, B., et al. (1995) Influence of diabetes mellitus on early and late outcome after percutaneous transluminal coronary angioplasty. Circulation, 91, 979-989. doi:10.1161/01.CIR.91.4.979
[18] Vigorito, C., et al. (1980) Severity of coronary artery disease in patients with diabetes mellitus. Angiographic study of 34 diabetic and 120 nondiabetic patients. American Heart Journal, 100, 782-787. doi:10.1016/0002-8703(80)90056-3
[19] Jaffe, A.S., et al. (1984) Increased congestive heart failure after myocardial infarction of modest extent in patients with diabetes mellitus. American Heart Journal, 108, 31-37. doi:10.1016/0002-8703(84)90541-6
[20] Stone, P.H., et al. (1989) The effect of diabetes mellitus on prognosis and serial left ventricular function after acute myocardial infarction: Contribution of both coronary disease and diastolic left ventricular dysfunction to the adverse prognosis. The MILIS Study Group. Journal of the American College of Cardiology, 14, 49-57. doi:10.1016/0735-1097(89)90053-3
[21] Kouvaras, G., Cokkinos, D. and Spyropoulou, M. (1988) Increased mortality of diabetics after acute myocardial infarction attributed to diffusely impaired left ventricular performance as assessed by echocardiography. Japan Heart Journal, 29, 1-9. doi:10.1536/ihj.29.1
[22] Nitenberg, A., et al. (1993) Impairment of coronary vascular reserve and ACh-induced coronary vasodilation in diabetic patients with angiographically normal coronary arteries and normal left ventricular systolic function. Diabetes, 42, 1017-1025. doi:10.2337/diabetes.42.7.1017
[23] Nahser Jr., P.J., et al. (1995) Maximal coronary flow reserve and metabolic coronary vasodilation in patients with diabetes mellitus. Circulation, 91, 635-640. doi:10.1161/01.CIR.91.3.635
[24] Factor, S.M., et al. (1981) Hypertensive-diabetic cardiomyopathy in the rat: An experimental model of human disease. American Journal of Pathology, 102, 219-228.
[25] Factor, S.M., Minase, T. and Sonnenblick, E.H. (1980) Clinical and morphological features of human hypertensive-diabetic cardiomyopathy. American Heart Journal, 99, 446-458. doi:10.1016/0002-8703(80)90379-8
[26] Kawaguchi, M., et al. (1997) A comparison of ultrastructural changes on endomyocardial biopsy specimens obtained from patients with diabetes mellitus with and without hypertension. Heart Vessels, 12, 267-274. doi:10.1007/BF02766802
[27] Singh, R., et al. (2001) Advanced glycation end-products: A review. Diabetologia, 44, 129-146. doi:10.1007/s001250051591
[28] Rosen, P., Du, X. and Tschope, D. (1998) Role of oxygen derived radicals for vascular dysfunction in the diabetic heart: Prevention by alpha-tocopherol? Molecular and Cellular Biochemistry, 188, 103-111. doi:10.1023/A:1006876607566
[29] Devereux, R.B., et al. (2000) Impact of diabetes on cardiac structure and function: The strong heart study. Circulation, 101, 2271-2276. doi:10.1161/01.CIR.101.19.2271
[30] Young, M.E., McNulty, P. and Taegtmeyer, H. (2002) Adaptation and maladaptation of the heart in diabetes: Part II: Potential mechanisms. Circulation, 105, 1861-1870. doi:10.1161/01.CIR.0000012467.61045.87
[31] Taegtmeyer, H. (2004) Cardiac metabolism as a target for the treatment of heart failure. Circulation, 110, 894-896. doi:10.1161/01.CIR.0000139340.88769.D5
[32] Rodrigues, B., Cam, M.C. and McNeill, J.H. (1998) Metabolic disturbances in diabetic cardiomyopathy. Molecular and Cellular Biochemistry, 180, 53-57. doi:10.1023/A:1006882805197
[33] Boudina, S. and Abel, E.D. (2006) Mitochondrial uncoupling: A key contributor to reduced cardiac efficiency in diabetes. Physiology (Bethesda), 21, 250-258. doi:10.1152/physiol.00008.2006
[34] Tarquini, R., et al. (2011) The diabetic cardiomyopathy. Acta Diabetologica, 48, 173-181. doi:10.1007/s00592-010-0180-x
[35] Tesfamariam, B., Brown, M.L. and Cohen, R.A. (1991) Elevated glucose impairs endothelium-dependent relaxation by activating protein kinase C. Journal of Clinical Investigation, 87, 1643-1648. doi:10.1172/JCI115179
[36] Tesfamariam, B., Jakubowski, J.A. and Cohen, R.A. (1989) Contraction of diabetic rabbit aorta caused by endothelium-derived PGH2-TxA2. The American Journal of Physiology, 257, H1327-H1333.
[37] Fein, F.S. and Sonnenblick, E.H. (1985) Diabetic cardiomyopathy. Progress in Cardiovascular Diseases, 27, 255-270.
[38] Neumann, S., et al. (2002) Aldosterone and D-glucose stimulate the proliferation of human cardiac myofibroblasts in vitro. Hypertension, 39, 756-760. doi:10.1161/hy0302.105295
[39] Liu, Y., et al. (1995) Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5’ enhancer. Circulation Research, 77, 638-643. doi:10.1161/01.RES.77.3.638
[40] Cagliero, E., et al. (1991) Characteristics and mechanisms of high-glucose-induced overexpression of basement membrane components in cultured human endothelial cells. Diabetes, 40, 102-110.
[41] Cockcroft, J.R., Webb, D.J. and Wilkinson, I.B. (2000) Arterial stiffness, hypertension and diabetes mellitus. Journal of Human Hypertension, 14, 377-380. doi:10.1038/sj.jhh.1001023
[42] London, G.M. and Guerin, A.P. (1999) Influence of arterial pulse and reflected waves on blood pressure and cardiac function. American Heart Journal, 138, 220-224. doi:10.1016/S0002-8703(99)70313-3
[43] Ohtsuka, S., et al. (1996) Alterations in left ventricular wall stress and coronary circulation in patients with isolated systolic hypertension. Journal of Hypertension, 14, 1349-1355. doi:10.1097/00004872-199611000-00014
[44] Airaksinen, K.E., et al. (1989) Augmentation of atrial contribution to left ventricular filling in IDDM subjects as assessed by Doppler echocardiography. Diabetes Care, 12, 159-161. doi:10.2337/diacare.12.2.159
[45] Monteagudo, P.T., et al. (2000) Influence of autonomic neuropathy upon left ventricular dysfunction in insulindependent diabetic patients. Clinical Cardiology, 23, 371-375. doi:10.1002/clc.4960230513
[46] Walter Jr., R.M., et al. (1991) Copper, zinc, manganese, and magnesium status and complications of diabetes mellitus. Diabetes Care, 14, 1050-1056. doi:10.2337/diacare.14.11.1050
[47] Islam, K.N., et al. (1995) Fragmentation of ceruloplasmin following non-enzymatic glycation reaction. The Journal of Biochemistry, 118, 1054-1060. doi:10.1093/jb/118.5.1054
[48] Argirova, M.D. and Ortwerth, B.J. (2003) Activation of protein-bound copper ions during early glycation: Study on two proteins. Archives of Biochemistry and Biophysics, 420, 176-184. doi:10.1016/j.abb.2003.09.005
[49] Yim, M.B., et al. (2001) Protein glycation: Creation of catalytic sites for free radical generation. Annals of the New York Academy of Sciences, 928, 48-53. doi:10.1111/j.1749-6632.2001.tb05634.x
[50] Rota, M., et al. (2006) Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the p66shc gene. Circulation Research, 99, 42-52. doi:10.1161/01.RES.0000231289.63468.08
[51] Poirier, P., et al. (2001) Diastolic dysfunction in normotensive men with well-controlled type 2 diabetes: Importance of maneuvers in echocardiographic screening for preclinical diabetic cardiomyopathy. Diabetes Care, 24, 5-10. doi:10.2337/diacare.24.1.5
[52] Schannwell, C.M., et al. (2002) Left ventricular diastolic dysfunction as an early manifestation of diabetic cardiomyopathy. Cardiology, 98, 33-39. doi:10.1159/000064682
[53] Robillon, J.F., et al. (1994) Abnormalities suggestive of cardiomyopathy in patients with type 2 diabetes of relatively short duration. Diabete and Metabolisme, 20, 473-480.
[54] Astorri, E., et al. (1997) Isolated and preclinical impairment of left ventricular filling in insulin-dependent and non-insulin-dependent diabetic patients. Clinical Cardiology, 20, 536-540. doi:10.1002/clc.4960200606
[55] Vered, A., et al. (1984) Exercise-induced left ventricular dysfunction in young men with asymptomatic diabetes mellitus (diabetic cardiomyopathy). The American Journal of Cardiology, 54, 633-637. doi:10.1016/0002-9149(84)90263-7
[56] Carlstrom, S. and Karlefors, T. (1970) Haemodynamic studies on newly diagnosed diabetics before and after adequate insulin treatment. British Heart Journal, 32, 355-358. doi:10.1136/hrt.32.3.355
[57] Karlefors, T. (1966) Haemodynamic studies in male diabetics. Acta Medica Scandinavica, 449, 45-80.
[58] Borow, K.M., et al. (1990) Myocardial mechanics in young adult patients with diabetes mellitus: Effects of altered load, inotropic state and dynamic exercise. Journal of the American College of Cardiology, 15, 1508-1517. doi:10.1016/0735-1097(90)92818-M
[59] Maisch, B., Alter, P. and Pankuweit, S. (2011) Diabetic cardiomyopathy—Fact or fiction? Herz, 36, 102-115. doi:10.1007/s00059-011-3429-4
[60] UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). The Lancet, 352, 837-853. doi:10.1016/S0140-6736(98)07019-6
[61] McCormack, J. and Greenhalgh, T. (2000) Seeing what you want to see in randomised controlled trials: Versions and perversions of UKPDS data. United Kingdom prospective diabetes study. British Medical Journal, 320, 1720-1723.doi:10.1136/bmj.320.7251.1720
[62] Hansen, A., et al. (2002) C-peptide exerts beneficial effects on myocardial blood flow and function in patients with type 1 diabetes. Diabetes, 51, 3077-3082. doi:10.2337/diabetes.51.10.3077
[63] H. von Bibra, et al. (2004) Augmented metabolic control improves myocardial diastolic function and perfusion in patients with non-insulin dependent diabetes. Heart, 90, 1483-1484. doi:10.1136/hrt.2003.020842
[64] Konduracka, E., et al. (2007) Diabetes-specific cardiomyopathy in type 1 diabetes mellitus: No evidence for its occurrence in the era of intensive insulin therapy. European Heart Journal, 28, 2465-2471. doi:10.1093/eurheartj/ehm361
[65] Thrainsdottir, I., et al. (2004) Initial experience with GLP-1 treatment on metabolic control and myocardial function in patients with type 2 diabetes mellitus and heart failure. Diabetes and Vascular Disease Research, 1, 40-43. doi:10.3132/dvdr.2004.005
[66] UK Prospective Diabetes Study Group (1998) Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. British Medical Journal, 317, 703-713. doi:10.1136/bmj.317.7160.703
[67] Rosen, R., Rump, A.F. and Rosen, P. (1995) The ACE-inhibitor captopril improves myocardial perfusion in spontaneously diabetic (BB) rats. Diabetologia, 38, 509-517. doi:10.1007/BF00400718
[68] Al-Shafei, A.I., et al. (2002) Magnetic resonance imaging analysis of cardiac cycle events in diabetic rats: The effect of angiotensin-converting enzyme inhibition. Journal of Physiology, 538, 555-572. doi:10.1113/jphysiol.2001.012857
[69] Al-Shafei, A.I., et al. (2002) Non-invasive magnetic resonance imaging assessment of myocardial changes and the effects of angiotensin-converting enzyme inhibition in diabetic rats. Journal of Physiology, 538, 541-553. doi:10.1113/jphysiol.2001.012856
[70] Zaman, A.K., et al. (2004) Salutary effects of attenuation of angiotensin II on coronary perivascular fibrosis associated with insulin resistance and obesity. Journal of Molecular and Cellular Cardiology, 37, 525-535. doi:10.1016/j.yjmcc.2004.05.006
[71] Kawasaki, D., et al. (2007) Role of activated renin-angiotensin system in myocardial fibrosis and left ventricular diastolic dysfunction in diabetic patients—Reversal by chronic angiotensin II type 1A receptor blockade. Circulation Journal, 71, 524-529. doi:10.1253/circj.71.524
[72] Orea-Tejeda, A., et al. (2007) Aldosterone receptor antagonists induce favorable cardiac remodeling in diastolic heart failure patients. Revista de Investigación Clínica, 59, 103-107.
[73] Tang, W.H., et al. (2005) Aldosterone receptor antagonists in the medical management of chronic heart failure. Mayo Clinic Proceedings, 80, 1623-1630. doi:10.4065/80.12.1623
[74] Asif, M., et al. (2000) An advanced glycation endproduct cross-link breaker can reverse age-related increases in myocardial stiffness. Proceedings of National Academy of Sciences of the United States of America, 97, 2809-2813. doi:10.1073/pnas.040558497
[75] Liu, J., et al. (2003) Glycation end-product cross-link breaker reduces collagen and improves cardiac function in aging diabetic heart. American Journal of Physiology, Heart and Circulatory Physiology, 285, H2587-H2591.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.