Relationship between the tropical seagrass bed characteristics and the structure of the associated fish community

DOI: 10.4236/oje.2013.35038   PDF   HTML     3,866 Downloads   7,644 Views   Citations

Abstract

Structural complexity of seagrass bed including species composition and shoot density is argued to be an important factor determining fish assemblages. However statistical verification of such a relationship is possible only in areas with high species richness of seagrass and fish assemblages which is observed in tropical waters. Material for this study was collected in three seagrass beds with different structure in Inner Ambon Bay, Eastern Indonesia. This study provided evidence that higher structural complexity of seagrass bed was related to the higher richness, abundance, and biomass of fish. However, lower structural complexity of seagrass patch should not be underestimated because it provided different habitat for various stages of life in fish. Smaller fish preferred to occupy dense seagrass of dominant pioneer small-sized species (Halodule uninervis) and moved to the lesser dense bed of climax large-sized seagrass (Thalassia hemprichii and Enhalus acoroides) with increasing their size. This finding is important for seagrass-fisheries management.

Share and Cite:

Ambo-Rappe, R. , Nessa, M. , Latuconsina, H. and Lajus, D. (2013) Relationship between the tropical seagrass bed characteristics and the structure of the associated fish community. Open Journal of Ecology, 3, 331-342. doi: 10.4236/oje.2013.35038.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Hemminga, M.A. and Duarte, C.M. (2000) Seagrass ecology. Cambridge University Press, Cambridge, 2000. doi:10.1017/CBO9780511525551
[2] Lee, S.Y., Fong, C.W. and Wu, R.S.S. (2001) The effects of seagrass (Zostera japonica) canopy structure on associated fauna: A study using artificial seagrass units and sampling of natural beds. Journal of Experimental Marine Biology and Ecology, 259, 23-50. doi:10.1016/S0022-0981(01)00221-0
[3] Jernakoff, P. and Nielsen, J. (1998) Plant-animal associations in two species of seagrasses in Western Australia. Aquatic Botany, 60, 359-376. doi:10.1016/S0304-3770(97)00100-9
[4] Kikuchi, T. and Peres, J.M. (1977) Consumer ecology of seagrass beds. In: McRoy, C.P. and Helffrich, C., Eds., Seagrass Ecosystems: A Scientific Perspective, Marcel Dekker, Inc., New York, 147-193.
[5] Edgar, G.J. and Shaw, C. (1995) The production and trophic ecology of shallow-water fish assemblages in southern Australia III: General relationships between sediments, seagrasses, invertebrates and fishes. Journal of Experimental Marine Biology and Ecology, 194, 107-131. doi:10.1016/0022-0981(95)00085-2
[6] Jackson, E.L., Rowden, A.A., Attrill, M.J., Bossey, S.J. and Jones, M.B. (2001) The important of seagrass beds as a habitat for fishery species. Oceanography and Marine Biology, 39, 269-303.
[7] Nakaoka, M. (2005) Plant-animal interactions in seagrass beds: Ongoing and future challenges for understanding population and community dynamics. Population Ecology, 47, 167-177. doi:10.1007/s10144-005-0226-z
[8] Den Hartog, C. and Kuo, J. (2006) Taxonomy and biogeography of seagrasses. In: Larkum, A.W.D., Orth, R.J. and Duarte, C.M., Eds., Seagrasses: Biology, Ecology and Conservation, Springer, The Netherlands, 1-24.
[9] Den Hartog, C. (1970) The seagrasses of the world. North Holland Publishing Co., Amsterdams.
[10] Butler, A. and Jernakoff, P. (1999) Seagrass in Australia: strategic review and development of an R & D plan. Csiro, Collingwood.
[11] Kuriandewa, T.E., Kiswara, W., Hutomo, M. and Soemodihardjo, S. (2003) The seagrasses of Indonesia. In: Green, E.P. and Short, F.T., Eds., World Atlas of Seagrasses, University of California Press, Barkeley, 172-182.
[12] Kiswara, W. (1994) A review: Seagrass ecosystem studies in Indonesian waters. In: Wilkinson, C.R., Sudara, S. and Chou, L.M., Eds., Proceeding on the ASEAN-Australia Symposium on Living Coastal Resources, Chulalongkorn University, Bangkok, 259-282.
[13] Toyohara, T., Nakaoka, M. and Aioi, K. (1999) Population dynamics and reproductive traits of phytal gastropods in seagrass bed in Otsuchi Bay, north-eastern Japan. Marine Ecology, 20, 273-289. doi:10.1046/j.1439-0485.1999.2034082.x
[14] Rotherham, D. and West, R.J. (2002) Do different seagrass species support distinct fish communities in southeastern Australia? Fisheries Management and Ecology, 9, 235-248.
[15] Hyndes, G.A., Kendrick, A.J., MacArthur, L.D. and Steward, E. (2003) Differences in the species and size-composition of fish assemblages in three distinct seagrass habitats with differing plant and meadow structure. Marine Biology, 142, 1195-1206.
[16] Hori, M., Suzuki, T., Monthum, Y., Srisombat, T., Tanaka, Y., Nakaoka, M. and Mukai, H. (2009) High seagrass diversity and canopy-height increase associated fish diversity and abundance. Marine Biology, 156, 1447-1458. doi:10.1007/s00227-009-1184-3
[17] Stoner, A.W. and Lewis, F.G. (1985). The influence of quantitative and qualitative aspects of habitat complexity in tropical seagrass meadows. Journal of Experimental Marine Biology and Ecology, 94, 19-40. doi:10.1016/0022-0981(85)90048-6
[18] Short, F.T., Polidoro, B., Livingstone, S.R., Carpenter, K.E., Bandeira, S., Bujang, J.S., Calumpong, H.P., Carruthers, T.J.B., Coles, R.G., Dennison, W.C., Erftemeijer, P.L.A., Fortes, M.D., Freeman, A.S., Jagtap, T.G., Kamal, A.H.M., Kendrick, G.A., Kenworthy, W.J., La Nafie, Y.A., Nasution, I.M., Orth, R.J., Prathep, A., Sanciangcho, J.C., van Tussenbroek, B., Vergara, S.G., Waycott, M. and Zieman, J.C. (2011) Extinction risk assessment of the world’s seagrass species. Biological Conservation, 144, 1961-1971.
[19] Eggleston, D.B., Elis, W.E., Etherington, L.L., Dahlgren, C.P. and Posey, M.H. (1999) Organism responses to habitat fragmentation and diversity: Habitat colonization by estuarine macrofauna. Journal of Experimental Marine Biology and Ecology, 236, 107-132. doi:10.1016/S0022-0981(98)00192-0
[20] Bowden, D.A., Rowden, A.A. and Attrill, M.J. (2001) Effect of patch size and in-patch location on the infaunal macroinvertebrate assemblages of Zostera marina seagrass beds. Journal of Experimental Marine Biology and Ecology, 259, 133-154. doi:10.1016/S0022-0981(01)00236-2
[21] Ambo-Rappe, R. (2011) Seagrasses: An ecosystem under threat. Habitat fragmentation and heavy metal accumulation. Lambert Academic Publishing, Saarbrücken.
[22] Debinski, D.M. and Holt, R.D. (2000) A survey and overview of habitat fragmentation experiments. Conservation Biology, 14, 342-355. doi:10.1046/j.1523-1739.2000.98081.x
[23] Helzer, C.J. and Jelinski, D.E. (1999) The relative importance of patch area and perimeter-area ratio to grassland breeding birds. Ecological Applications, 9, 1448.
[24] McNeill, S.E. and Fairweather, P.G. (1993) Single large or several small marine reserves? An experimental approach with seagrass fauna. Journal of Biogeography, 20, 429-440. doi:10.2307/2845591
[25] Eggleston, D.B., Etherington, L.L. and Elis, W.E. (1998) Organism response to habitat patchiness: Species and habitat-dependent recruitment of decapod crustaceans. Journal of Experimental Marine Biology and Ecology, 223, 111-132. doi:10.1016/S0022-0981(97)00154-8
[26] Irlandi, E.A., Ambrose, W.G. and Orlando, B.A. (1995) Landscape ecology and the marine environment: How spatial configuration of seagrass habitat influences growth and survival of the bay scallop. Oikos, 72, 307-313. doi:10.2307/3546115
[27] Mills, V.S. and Berkenbusch, K. (2009) Seagrass (Zostera muelleri) patch size and spatial location influence infaunal macroinvertebrate assemblages. Estuarine, Coastal and Shelf Science, 81, 123-129. doi:10.1016/j.ecss.2008.10.005
[28] Bell, S.S., Brooks, R.A., Robbins, B.D. and Fonseca, M.S. (2001) Faunal response to fragmentation in seagrass habitats: Implications for seagrass conservation. Biological Conservation, 100, 115-123. doi:10.1016/S0006-3207(00)00212-3
[29] Gillanders, B.M. (2006) Seagrasses, fish, and fisheries. In: Larkum, A.W.D., Orth, R.J. and Duarte, C.M., Eds., Seagrasses: Biology, Ecology and Conservation, Springer, Berlin, 503-536.
[30] Troost, D.G., Sutomo, A.B. and Wenno, L.F. (1976) Distribution and abundance of major zooplankton groups in Ambon Bay (Maluku, Indonesia) during a salp swarming, with notes on Chaetocnatha and Pteropoda species. Marine Reasearch in Indonesia, 16, 31-44.
[31] Waycott, M., McMahon, K., Mellors, J., Calladine, A. and Kleine, D. (2004) A guide to tropical seagrass of Indo-West Pacific. James Cook University, Townsville.
[32] McKenzie, L.J., Campbell, S.J. and Roder, C.A. (2003) Seagrass-Watch: Manual for mapping and monitoring seagrass resources by community (citizen) volunteers. 2nd Edition, QFS, NFC, Cairns.
[33] Allen, G. (1999) Marine fishes of South-East Asia: A field guide for anglers and divers. Periplus Editions, Singapore.
[34] Carpenter, K.E. and Niem, V.H. (2001) The living marine resources of the Western Central Pacific. Volume 6: bony fishes Part 4 (Labridae to Latimeriidae), estuarine crocodiles, sea turtles, sea snakes and marine mammals. Food and Agriculture of the United Nations, Rome.
[35] Kuiter, R.H. and Tonozuka, T. (2001) Pictorial guide to Indonesian reef fishes. PT Dive & Dave’s, Victoria.
[36] Coles, R.G., Lee Long, W.J. and Watson, R.A. (1993) Distribution of seagrasses, and their fish and Penaeid prawn communities, in Cairn Harbour, a tropical estuary, Northern Queensland, Australia. Australian Journal of Marine and Freshwater Research, 44, 193-210.
[37] Hair, C.A., Bell, J.D. and Kingsford, M.D. (1994) Effects of position in the water column, vertical movement and shade on settlement of fish to artificial habitats. Bulletin of Marine Science, 55, 434-444.
[38] Chittaro, P.M., Usseglio, P. and Sale, P.F. (2005) Variation in fish density, assemblage composition and relative rates of predation among mangrove, seagrass, and coral reef habitats. Environmental Biology of Fishes, 72, 175-187. doi:10.1007/s10641-004-9077-2
[39] Kimirei, I.A., Nagelkerken, I., Griffioen, B., Wagner, C. and Mgaya, Y.D. (2011) Ontogenetic habitat use by mangrove/seagrass-associated coral reef fishes shows flexibility in time and space. Estuarine, Coastal and Shelf Science, 92, 47-58. doi:10.1016/j.ecss.2010.12.016
[40] Bell, J.D. and Pollard, D.A. (1989) Ecology of fish assemblages and fisheries associated with seagrasses. In: Larkum, A.W.D., McComb, A.J. and Shepherd, S.A., Eds., Biology of Seagrasses: A Treatise on the Biology of Seagrasses with Special Reference to the Australasian Region, Elsevier, Amsterdam, 565-609.
[41] Beck, M.W., Heck, K.L., Able, K.W., Childers, D.L., Eggleston, D.B, Gillanders, B.M., Halpern, B., Hays, C.G., Hoshino, K., Minello, T.J., Orth, R.J., Sheridan, P.F. and Weinstein, M.P. (2001) The identification, conservation, and mangement of estuarine and marine nurseries for fish and invertebrates. Bioscience, 51, 633-641. doi:10.1641/0006-3568(2001)051[0633:TICAMO]2.0.CO;2
[42] Moura, R.L., Francini-Filho, R.B., Chaves, E.M., Minte-Vera, C.V. and Lindeman, K.C. (2011) Use of riverine through reef habitat systems by dog snapper (Lutjanus jocu) in eastern Brazil. Estuarine, Coastal and Shelf Science, 95, 274-278. doi:10.1016/j.ecss.2011.08.010
[43] De la Morinière, E.C., Pollux, B.J.A., Nagelkerken, I. and van der Velde, G. (2002) Post-settlement life cycle migration patterns and habitat preference of coral reef fish that use seagrass and mangrove habitats as nurseries. Estuarine, Coastal and Shelf Science, 55, 309-321. doi:10.1006/ecss.2001.0907
[44] Dorenbosch, M., van Riel, M.C., Nagelkerken, I. and van der Velde, G. (2004) The relationship of reef fish densities to the proximity of mangrove and seagrass nurseries. Estuarine, Coastal and Shelf Science, 60, 37-48. doi:10.1016/j.ecss.2003.11.018
[45] Horinouchi, M. (2007) Review of the effect of withinpatch scale structural complexity on seagrass species. Journal of Experimental Marine Biology and Ecology, 350, 111-129. doi:10.1016/j.jembe.2007.06.015
[46] Horinouchi, M. and Sano, M. (1999) Effect of changes in seagrass shoot density and leaf height on the abundances and distribution patterns of juveniles of three gobiid fishes in a Zostera marina bed. Marine Ecology Progress Series, 183, 87-94. doi:10.3354/meps183087
[47] Middleton, M.J., Bell, J.D., Burchmore, J.J., Pollard, D.A. and Pease, B.C. (1994) Structural differences in the fish communities of Zostera capricorni and Posidonia australis seagrass meadows in Botany Bay, New South Wales. Aquatic Botany, 18, 89-109. doi:10.1016/0304-3770(84)90082-2
[48] Kendrick, A.J. and Hyndes, G.A. (2003) Pattern in the abundance and size-distribution of syngnathid fishes among habitats in seagrass-dominated marine environment. Estuarine, Coastal and Shelf Science, 57, 631-640. doi:10.1016/S0272-7714(02)00402-X
[49] Rooker, J.R., Holt, S.A., Soto, M.A. and Holt, G.J. (1998) Post settlement patterns of habitat use by sciaenid fishes in subtropical seagrass meadows. Estuaries, 21, 318-327. doi:10.2307/1352478
[50] Stoner, A. (1982) The influence of benthic macrophytes on the foraging behavior of pinfish (Lagodon rhomboides) (Linneaeus). Journal of Experimental Marine Biology and Ecology, 58, 271-284. doi:10.1016/0022-0981(82)90134-4
[51] Bell, J.D. and Westoby, M. (1986) Variation in seagrass height and density over a wide spatial scale: Effects on common fish and decapods. Journal of Experimental Marine Biology and Ecology, 104, 275-295. doi:10.1016/0022-0981(86)90110-3
[52] Hannan, J.C. and Williams, R.J. (1998) Recruitment of juvenile marine fishes to seagrass habitat in a temperate Australian estuary. Estuaries, 21, 29-51. doi:10.2307/1352545

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.