Share This Article:

Thermochromic Biopolymer Based on Natural Anthocyanidin Dyes

Full-Text HTML Download Download as PDF (Size:764KB) PP. 43-47
DOI: 10.4236/ojpchem.2013.33009    3,961 Downloads   7,666 Views   Citations

ABSTRACT

Recently a novel thermochromic poly(lactic acid) (PLA)-composite material was presented. Depending on temperature the incorporated anthocyanidin dye was found to be present either in its neutral or anionic anhydrobase form. A reversible formation of PLA-dye complexes triggered by conformational changes of the polymer backbone was proposed to explain this thermochromic effect. In order to study the influence of the dye structure on the PLA-dye complex formation and on the thermochromic properties of the PLA-composite material a variation of the anthocyanidin dye structure was investigated. The results indicate that a hydroxyl group in 3’-position of the anthocyanidin dye resulting in the presence of adjacent hydroxyl groups is mandatory for the PLA-anthocyanidin dye complex formation and thus for the occurrence of thermochromism.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

D. Lötzsch, R. Ruhmann and A. Seeboth, "Thermochromic Biopolymer Based on Natural Anthocyanidin Dyes," Open Journal of Polymer Chemistry, Vol. 3 No. 3, 2013, pp. 43-47. doi: 10.4236/ojpchem.2013.33009.

References

[1] W. Liang and F. E. Karasz, “Solid-State Thermochromic Transition in Poly(2-methoxyphenylene Vinylene),” Poly mer, Vol. 34, No. 13, 1993, pp. 2702-2706. doi:10.1016/0032-3861(93)90109-N
[2] M. Leclerc, “Optical and Electrochemical Transducers Based on Functionalized Conjugated Polymers,” Advan ced Materials, Vol. 11, No. 18, 1999, pp. 1491-1498. doi:10.1002/(SICI)1521-4095(199912)11:18<1491::AID-ADMA1491>3.0.CO
[3] A. F. Thünemann, S. Janietz, S. Anlauf and A. Wedel, “Thermochromism of a Liquid Crystalline Dialkoxy Sub stituted Poly(1,4-phenylene-1,3,4-oxadiazol-2,5-diyl),” Jour nal of Materials Chemistry, Vol. 10, No. 12, 2000, pp. 2652-2656. doi:10.1039/b005757f
[4] Y. Gu, W. Cao, L. Zhu, D. Chen and M. Jiang, “Polymer Mortar Assisted Self-Assembly of Nanocrystalline Poly diacetylene Bricks Showing Reversible Thermochro mism,” Macromolecules, Vol. 41, No. 7, 2008, pp. 2299-2303. doi:10.1021/ma800023f
[5] D. J. Ahn, S. Lee and J. M. Kim, “Rational Design of Conjugated Polymer Supramolecules with Tunable Col orimetric Responses,” Advanced Functional Materials, Vol. 19, No. 10, 2009, pp. 1483-1496. doi:10.1002/adfm.200801074
[6] L. Yu and S. L. Hsu, “A Spectroscopic Analysis of the Role of Side Chains in Controlling Thermochromic Tran sitions in Polydiacetylenes,” Macromolecules, Vol. 45, No. 1, 2012, pp. 420-429. doi:10.1021/ma201519v
[7] B. L. Lucht, W. B. Euler and O. J. Gregory, “Investi gation of the Thermochromic Properties of Polythio phenes Dispersed in Host Polymers,” Polymer Preprints, Vol. 43, No. 1, 2002, pp. 59-60.
[8] A. Seeboth, D. Lotzsch, E. Potechius and R. Vetter, “Thermochromic Effects of Leuco Dyes Studied in Poly propylene,” Chinese Journal of Polymer Science, Vol. 24, No. 4, 2006, pp. 363-368. doi:10.1142/S0256767906001400
[9] A. Seeboth, A. Klukowska, R. Ruhmann and D. Lotzsch, “Thermochromic Polymer Materials,” Chinese Journal of Polymer Science, Vol. 25, No. 2, 2007, pp. 123-135. doi:10.1142/S0256767907001923
[10] M. Rubacha, “Thermochromic Cellulose Fibers,” Advan ces in Polymer Technology, Vol. 18, No. 4, 2007, pp. 323-328. doi:10.1002/pat.889
[11] W. Ogrodnik, “Use of Color-Changing Pigment to Detect Wire and Cable Hazards,” Wire Journal International, Vol. 41, No. 4, 2008, pp. 150-155.
[12] A. Seeboth, J. Kriwanek and R. Vetter, “The First Ex ample of Thermochromism of Dyes Embedded in Trans parent Polymer Gel Networks,” Journal of Materials Chemistry, Vol. 9, No. 10, 1999, pp. 2277-2278. doi:10.1039/a906159b
[13] A. Seeboth, D. Lotzsch and R. Ruhmann, “First Example of a Non-Toxic Thermochromic Polymer Material— Based on a Novel Mechanism,” Journal of Materials Chemistry C, Vol. 1, No. 16, 2013, pp. 2811-2813. doi:10.1039/c3tc30094c
[14] M. G. Baron and M. Elie, “Temperature Sensing Using Reversible Thermochromic Polymeric Films,” Sensors and Actuators B, Vol. 90, No. 1-3, 2003, pp. 271-275. doi:10.1016/S0925-4005(03)00045-5
[15] K. Yoshida, M. Mori and T. Kondo, “Blue Flower Color Development by Anthocyanidins: From Chemical Stru cture to Cell Physiology,” Nature Product Reports, Vol. 26, No. 7, 2009, pp. 884-915. doi:10.1039/b800165k
[16] A. Castaneda-Ovando, L. Pacheco-Hernandez, E. Paez Hernandez, J. A. Rodriguez and C. A. Galan-Vidal, “Che mical Studies of Anthocyanins: A Review,” Food Chem istry, Vol. 113, No. 4, 2009, pp. 859-871.
[17] T. Goto and T. Kondo, “Structure and Molecular Stacking of Anthocyanins—Flower Color Variations,” Angewandte Chemie, Vol. 30, No. 1, 1991, pp. 17-33. doi:10.1002/ange.19911030105
[18] M. Buchweitz, G. Gudi, R. Carle, D. R. Kammerer and H. Schulz, “Systematic Investigations of Anthocyanin-Metal Interactions by Raman Spectroscopy,” Journal of Raman Spectroscopy, Vol. 43, No. 12, 2012, pp. 2001-2007. doi:10.1002/jrs.4123
[19] Y. Lin, K.-Y. Zhan, Z.-M. Dong, L.-S. Dong and Y.-S. Li, “Study of Hydrogen-Bonded Blend of Polylactide with Biodegradable Hyperbranched Poly(Ester Amide),” Macro molecules, Vol. 40, No. 17, 2007, pp. 6257-6267. doi:10.1021/ma070989a
[20] P. Bamfield and M. G. Hutchings, “Chromic Phenomena: Technological Applications of Colour Chemistry,” 2nd Edition, The Royal Society of Chemistry, Cambridge, 2010.
[21] C. Reichardt, “Solvatochromism, Thermochromism, Piezochromism, Halochromism, and Chiro-Solvatochromism of Pyridinium N-phenoxide Betaine Dyes,” Chemical Society Reviews, Vol. 21, No. 3, 1992, pp. 147-153. doi:10.1039/cs9922100147

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.