Thermochromic Biopolymer Based on Natural Anthocyanidin Dyes

Abstract

Recently a novel thermochromic poly(lactic acid) (PLA)-composite material was presented. Depending on temperature the incorporated anthocyanidin dye was found to be present either in its neutral or anionic anhydrobase form. A reversible formation of PLA-dye complexes triggered by conformational changes of the polymer backbone was proposed to explain this thermochromic effect. In order to study the influence of the dye structure on the PLA-dye complex formation and on the thermochromic properties of the PLA-composite material a variation of the anthocyanidin dye structure was investigated. The results indicate that a hydroxyl group in 3’-position of the anthocyanidin dye resulting in the presence of adjacent hydroxyl groups is mandatory for the PLA-anthocyanidin dye complex formation and thus for the occurrence of thermochromism.

Share and Cite:

D. Lötzsch, R. Ruhmann and A. Seeboth, "Thermochromic Biopolymer Based on Natural Anthocyanidin Dyes," Open Journal of Polymer Chemistry, Vol. 3 No. 3, 2013, pp. 43-47. doi: 10.4236/ojpchem.2013.33009.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] W. Liang and F. E. Karasz, “Solid-State Thermochromic Transition in Poly(2-methoxyphenylene Vinylene),” Poly mer, Vol. 34, No. 13, 1993, pp. 2702-2706. doi:10.1016/0032-3861(93)90109-N
[2] M. Leclerc, “Optical and Electrochemical Transducers Based on Functionalized Conjugated Polymers,” Advan ced Materials, Vol. 11, No. 18, 1999, pp. 1491-1498. doi:10.1002/(SICI)1521-4095(199912)11:18<1491::AID-ADMA1491>3.0.CO
[3] A. F. Thünemann, S. Janietz, S. Anlauf and A. Wedel, “Thermochromism of a Liquid Crystalline Dialkoxy Sub stituted Poly(1,4-phenylene-1,3,4-oxadiazol-2,5-diyl),” Jour nal of Materials Chemistry, Vol. 10, No. 12, 2000, pp. 2652-2656. doi:10.1039/b005757f
[4] Y. Gu, W. Cao, L. Zhu, D. Chen and M. Jiang, “Polymer Mortar Assisted Self-Assembly of Nanocrystalline Poly diacetylene Bricks Showing Reversible Thermochro mism,” Macromolecules, Vol. 41, No. 7, 2008, pp. 2299-2303. doi:10.1021/ma800023f
[5] D. J. Ahn, S. Lee and J. M. Kim, “Rational Design of Conjugated Polymer Supramolecules with Tunable Col orimetric Responses,” Advanced Functional Materials, Vol. 19, No. 10, 2009, pp. 1483-1496. doi:10.1002/adfm.200801074
[6] L. Yu and S. L. Hsu, “A Spectroscopic Analysis of the Role of Side Chains in Controlling Thermochromic Tran sitions in Polydiacetylenes,” Macromolecules, Vol. 45, No. 1, 2012, pp. 420-429. doi:10.1021/ma201519v
[7] B. L. Lucht, W. B. Euler and O. J. Gregory, “Investi gation of the Thermochromic Properties of Polythio phenes Dispersed in Host Polymers,” Polymer Preprints, Vol. 43, No. 1, 2002, pp. 59-60.
[8] A. Seeboth, D. Lotzsch, E. Potechius and R. Vetter, “Thermochromic Effects of Leuco Dyes Studied in Poly propylene,” Chinese Journal of Polymer Science, Vol. 24, No. 4, 2006, pp. 363-368. doi:10.1142/S0256767906001400
[9] A. Seeboth, A. Klukowska, R. Ruhmann and D. Lotzsch, “Thermochromic Polymer Materials,” Chinese Journal of Polymer Science, Vol. 25, No. 2, 2007, pp. 123-135. doi:10.1142/S0256767907001923
[10] M. Rubacha, “Thermochromic Cellulose Fibers,” Advan ces in Polymer Technology, Vol. 18, No. 4, 2007, pp. 323-328. doi:10.1002/pat.889
[11] W. Ogrodnik, “Use of Color-Changing Pigment to Detect Wire and Cable Hazards,” Wire Journal International, Vol. 41, No. 4, 2008, pp. 150-155.
[12] A. Seeboth, J. Kriwanek and R. Vetter, “The First Ex ample of Thermochromism of Dyes Embedded in Trans parent Polymer Gel Networks,” Journal of Materials Chemistry, Vol. 9, No. 10, 1999, pp. 2277-2278. doi:10.1039/a906159b
[13] A. Seeboth, D. Lotzsch and R. Ruhmann, “First Example of a Non-Toxic Thermochromic Polymer Material— Based on a Novel Mechanism,” Journal of Materials Chemistry C, Vol. 1, No. 16, 2013, pp. 2811-2813. doi:10.1039/c3tc30094c
[14] M. G. Baron and M. Elie, “Temperature Sensing Using Reversible Thermochromic Polymeric Films,” Sensors and Actuators B, Vol. 90, No. 1-3, 2003, pp. 271-275. doi:10.1016/S0925-4005(03)00045-5
[15] K. Yoshida, M. Mori and T. Kondo, “Blue Flower Color Development by Anthocyanidins: From Chemical Stru cture to Cell Physiology,” Nature Product Reports, Vol. 26, No. 7, 2009, pp. 884-915. doi:10.1039/b800165k
[16] A. Castaneda-Ovando, L. Pacheco-Hernandez, E. Paez Hernandez, J. A. Rodriguez and C. A. Galan-Vidal, “Che mical Studies of Anthocyanins: A Review,” Food Chem istry, Vol. 113, No. 4, 2009, pp. 859-871.
[17] T. Goto and T. Kondo, “Structure and Molecular Stacking of Anthocyanins—Flower Color Variations,” Angewandte Chemie, Vol. 30, No. 1, 1991, pp. 17-33. doi:10.1002/ange.19911030105
[18] M. Buchweitz, G. Gudi, R. Carle, D. R. Kammerer and H. Schulz, “Systematic Investigations of Anthocyanin-Metal Interactions by Raman Spectroscopy,” Journal of Raman Spectroscopy, Vol. 43, No. 12, 2012, pp. 2001-2007. doi:10.1002/jrs.4123
[19] Y. Lin, K.-Y. Zhan, Z.-M. Dong, L.-S. Dong and Y.-S. Li, “Study of Hydrogen-Bonded Blend of Polylactide with Biodegradable Hyperbranched Poly(Ester Amide),” Macro molecules, Vol. 40, No. 17, 2007, pp. 6257-6267. doi:10.1021/ma070989a
[20] P. Bamfield and M. G. Hutchings, “Chromic Phenomena: Technological Applications of Colour Chemistry,” 2nd Edition, The Royal Society of Chemistry, Cambridge, 2010.
[21] C. Reichardt, “Solvatochromism, Thermochromism, Piezochromism, Halochromism, and Chiro-Solvatochromism of Pyridinium N-phenoxide Betaine Dyes,” Chemical Society Reviews, Vol. 21, No. 3, 1992, pp. 147-153. doi:10.1039/cs9922100147

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.