Influence of Modified ZnO Quantum Dots and Nanostructures as New Antibacterials


Antibacterial activities of various spherical zinc oxide nanoparticles and nano special morphological structures including quantum dots, nanorod arrays, nanoporous shapes and needle-like crystals had been investigated as new nanomedicine compounds. Also antibacterial activity based on minimal inhibitory concentration and the growth inhibitory zone (well method) was evaluated. ZnO nanostructures were fabricated by novel hydrolysis sol-gel-hydrothermal process followed with rapid quenching as new technique using glycerine, vegetable fatty esters such as coconut, sunflower and Lauric alcohol ethoxylated as organic templates soluble in eco-friendly nanofluids. The results showed that Bacillus anthracis and Pseudomonas aerogenes were extremely sensitive to treatment with unique ZnO nanostructured. Their growth inhibitory zone presented 30 mm and 25 mm inhibition zone with better inhibitory effect compared to the Gentamicin antibiotic standard. ZnO nanostructures had also been indicated to have a wide range of antibacterial activities against both Gram-positive and Gram-negative bacteria especially more effective on (gr+) species using the growth inhibitory zone. We could design and make significant formulations of fatty acids and esters-capped ZnO quantum dots nanofluids which created high promising agents for controlling Anthrax, Staphylococcus epidermidis and their influences in antimicrobial properties with low cost for future.

Share and Cite:

Fakhroueian, Z. , Harsini, F. , Chalabian, F. , Katouzian, F. , Shafiekhani, A. and Esmaeilzadeh, P. (2013) Influence of Modified ZnO Quantum Dots and Nanostructures as New Antibacterials. Advances in Nanoparticles, 2, 247-258. doi: 10.4236/anp.2013.23035.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] L. E. Greene, B. D. Yuhas, M. Law, D. Zitoun and P. Yang, “Solution-Grown Zinc Oxide Nanowires,” Inorganic Chemistry, Vol. 45, No. 19, 2006, pp. 7535-7543.
[2] F. Li, W. Bi, L. Liu, Z. Li and X. Huang, “Preparation and Characterization of ZnO Nanospindles and ZnO@ ZnS Core-Shell Microspindles,” Colloids and Surfaces A, Vol. 334, No. 1-3, 2009, pp. 160-164. doi:10.1016/j.colsurfa.2008.10.016
[3] T. Jin, D. Sun, J. Y. Su, H. Zhang and H. J. Sue, “Antimicrobial Efficacy of Zinc Oxide Quantum Dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7,” Journal of Food Science, Vol. 74, No. 1, 2009, pp. M46-M52. doi:10.1111/j.1750-3841.2008.01013.x
[4] D. Zvekic, V. V. Srdic, M. A. Karaman and M. N. Matavulj, “Antimicrobial Properties of ZnO Nanoparticles Incorporated in Polyurethane Varnish,” Processing and Application of Ceramics, Vol. 5, No. 1, 2011, pp. 41-45.
[5] T. Alammar and A. V. Mudring, “Facile Ultrasound-As sisted Synthesis of ZnO Nanorods in an Ionic Liquid,” Materials Letters, Vol. 63, No. 9-10, 2009, pp. 732-735. doi:10.1016/j.matlet.2008.12.035
[6] Y. Tian, H. Ma, L. Shen, Z. Wang, Y. Qu and S. Li, “Novel and Simple Synthesis of ZnO Nanospheres through Decomposing Zinc Borate Nanoplatelets,” Materials Let ters, Vol. 63, No. 12, 2009, pp. 1071-1073. doi:10.1016/j.matlet.2009.02.009
[7] Y. Zeng, T. Zhang and L. Qiao, “Preparation and Gas Sensing Properties of the Nutlike ZnO Microcrystals via a Simple Hydrothermal Route,” Materials Letters, Vol. 63, No. 11, 2009, pp. 843-846. doi:10.1016/j.matlet.2009.01.012
[8] M. L. Singla, M. Shafeeq and M. Kumar, “Optical Characterization of ZnO Nanoparticles Capped with Various Surfactants,” Journal of Luminescence, Vol. 129, No. 12, 2009, pp. 434-438. doi:10.1016/j.jlumin.2008.11.021
[9] K. Senthilkumar, M. Tokunaga, H. Okamoto, O. Senthi lkumar and Y. Fujita, “Hydrogen Related Defect Com plexes in ZnO Nanoparticles,” Applied Physics Letters, Vol. 97, No. 9, 2010,Article ID: 091907. doi:10.1063/1.3485049
[10] X. Xu, C. Xu, J. Dai, J. Hu, F. Li and S. Zhang, “Size Dependence of Defect-Induced Room Temperature Ferro magnetism in Undoped ZnO Nanoparticles,” The Journal of Physical Chemistry C, Vol. 116, No. 15, 2012, pp. 8813-8818. doi:10.1021/jp3014749
[11] H. Q. Shi, W. N. Li, L.W. Sun, Y. Liu, H. M. Xiao and S. Y. Fu, “Synthesis of Silane Surface Modified ZnO Quantum Dots with Ultrastable, Strong and Tunable Luminescence,” Chemical Communications, Vol. 47, No. 43, 2011, pp. 11921-11923. doi:10.1039/c1cc15411g
[12] K. H. Tam, A. B. Djurisic, C. M. N. Chan, Y. Y. Xi, C. W. Tse, Y. H. Leung, W. K. Chan, F. C. C. Leung and D. W. T. Au, “Antibacterial Activity of ZnO Nanorods Prepared by a Hydrothermal Method,” Thin Solid Films, Vol. 516, No. 18, 2008, pp. 6167-6174. doi:10.1016/j.tsf.2007.11.081
[13] Y. Xie, Y. He, P. L. Irwin, T. Jin and X. Shi, “Antibacterial Activity and Mechanism of Action of Zinc Oxide Nanoparticles against Campylobacter jejuni,” Applied and Environmental Microbiology, Vol. 77, No. 7, 2011, pp. 2325-2331. doi:10.1128/AEM.02149-10
[14] N. Padmavathy and R. Vijayaraghavan, “Enhanced Bioactivity of ZnO Nanoparticles an Antimicrobial Study,” Science and Technology of Advanced Materials, Vol. 9, No. 3, 2008, Article ID: 035004. doi:10.1088/1468-6996/9/3/035004
[15] L. Zhang, Y. Ding and Y. L. D. Cang, “Antimicroorganism Activities Comparison among ZnO, TiO2, MgO and SiO2 Nanoparticles Suspensions at Different pH Values,” The 2nd International Conference on Chemical, Biological and Environmental Engineering, 2010, pp. 257-260.
[16] A. A. Tayel, W. F. EL-Tras, S. Moussa, A. F. EL-Baz, H. Mahrous, M. F. Salem and L. Brimer, “Antibacterial Action of Zinc Oxide Nanoparticles against Foodborne Pa thogens,” Journal of Food Safety, Vol. 31, No. 2, 2011, pp. 211-218. doi:10.1111/j.1745-4565.2010.00287.x
[17] R. O. Moussodia, L. Balan, C. Merlin, C. Mustin and R. Schneider, “Biocompatible and Stable ZnO Quantum Dots Generated by Functionalization with Siloxane-Core PAMAM Dendrons,” Journal of Materials Chemistry, Vol. 20, No. 6, 2010, pp. 1147-1155. doi:10.1039/b917629b
[18] M. Premanathan, K. Karthikeyan, K. Jeyasubramanian and G. Manivannan, “Selective Toxicity of ZnO Nano particles toward Gram-Positive Bacteria and Cancer Cells by Apoptosis through Lipid Peroxidation,” Nanomedicine: Nanotechnology, Biology and Medicine, Vol. 7, No. 2, 2011, pp. 184-192. doi:10.1016/j.nano.2010.10.001
[19] G. Singh, E. M. Joyce, J. Beddow and T. J. Mason, “Evo lution Antibacterial Activity of ZnO Nanoparticles Coated Sonochemically onto Textile Fabrics,” Journal of Microbiology, Biotechnology and Food Sciences, Vol. 2, No. 1, 2012, pp. 106-120.
[20] Z. E. Karvani and P. Chehrazi, “Antibacterial Activity of ZnO Nanoparticle on Gram-Positive and Gram Negative Bacteria,” African Journal of Microbiology Research, Vol. 5, No. 12, 2011, pp. 1368-1373. doi:10.5897/AJMR10.159
[21] O. Yamamoto, “Influence of Particle Size on the Antibacterial Activity of Zinc Oxide,” International Journal of Inorganic Materials, Vol. 3, No. 7, 2001, pp. 643-646.
[22] T. Phaechamud, J. Mahadlek, N. Aroonrerk, S. Choopun and J. Charoenteeraboon, “Antimicrobial Activity of ZnO Doxycycline Hyclate Thermosensitive Gel,” Science Asia, Vol. 38, No. 1, 2012, pp. 64-74. doi:10.2306/scienceasia 1513-1874.2012.38.064
[23] S. Kumar and P. D. Sahare, “Effects of Annealing on the Surface Defects of Zinc Oxide Nanoparticles,” Nano: Brief Reports and Reviews, Vol. 7, No. 3, 2012, Article ID: 1250022. doi:10.1142/s1793292012500221
[24] M. H. Wong, A. Berenov, X. Qi, M. J. Kappers, Z. H. Barber, B. Illy, Z. Lockman, M. P. Ryan and J. L. M. Driscoll, “Electrochemical Growth of ZnO Nano-Rods on Polycrystalline Zn Foil,” Nanotechnology, Vol. 14, No. 9, 2003, pp. 968-973.
[25] D. Bera, L. Qian, S. Sabui, S. Santra and P. H. Holloway, “Photoluminescence of ZnO Quantum Dots Produced by a Sol-Gel Process,” Optical Materials, Vol. 30, No. 8, 2008, pp. 1233-1239. doi:10.1016/j.optmat.2007.06.001
[26] A. Saric, S. Music and M. Ivanda, “Varying the Microstructural Properties of ZnO Particles Using Different Synthesis Routes,” Journal of Molecular Structure, Vol. 993, No. 1-3, 2011, pp. 219-224. doi:10.1016/j.molstructruc.2010.10.018
[27] R. Sreeja, Jobina John, P. M. Aneesh and M. K. Jayaraj, “Linear and Nonlinear Optical Properties of Luminescent ZnO Nanoparticles Embedded in PMMA Matrix,” Optics Communications, Vol. 283, No. 14, 2010, pp. 2908-2913.
[28] H. M. Cheng, H. C. Hsu, S. L. Chen, W. T. Wu, C. C. Kao, L. J. Lin and W. F. Hsieh, “Efficient UV Photoluminescence from Monodispersed Secondary ZnO Colloidal Spheres Synthesized by Sol-Gel Method,” Journal of Crystal Growth, Vol. 277, No. 1-4, 2005, pp. 192-199. doi:10.1016/j.jcrysgro.2004.12.133
[29] B. X. Hu, J. Gong, L. Zhang and J. C. Yu, “Continuous Size Tuning of Monodisperse ZnO Colloidal Nanocrystal Clusters by a Microwave-Polyol Process and Their Application for Humidity Sensing,” Advanced Materials, Vol. 20, No. 24, 2008, pp. 4845-4850. doi:10.1002/adma.200801433
[30] S. Y. Kuo, F. I. Lai, W. C. Chen, C. P. Cheng, H. C. Kuo and S. C. Wang, “Ultraviolet Lasing of Sol-Gel-Derived Zinc Oxide Polycrystalline Films,” Japanese Journal of Applied Physics, Vol. 45, No. 4B, 2006, pp. 3662-3665. doi:10.1143/JJAP.45.3662
[31] K. F. Lin, H. M. Cheng, H. C. Hsu, L. J. Lin and W. F. Hsieh, “Band Gap Variation of Size-Controlled ZnO Quantum Dots Synthesized by Sol-Gel Method,” Chemical Physics Letters, Vol. 409, No. 4-6, 2005, pp. 208-211. doi:10.1016/j.cp1ett.2005.05.027
[32] C. Valgas, S. M. de Souza, E. F. Smania and A. Smania Jr., “Screening Methods to Determine Antibacterial Activity of Natural Products,” Brazilian Journal of Microbiology, Vol. 38, No. 2, 2007, pp. 369-380.
[33] European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID), “Determination of Minimum Inhibitory Concentrations (MICs) of antibacterial agents by agar dilution,” Clinical Microbiology and Infection, Vol. 6, No. 9, 2000, pp. 509-515.
[34] F. Arabi, M. Imandar, M. Negahdary, M. Imandar, M. Torkamani Noughabi, H. Akbari dastjerdi and M. Fazilati, “Investigation Anti-Bacterial Effect of Zinc Oxide Nano particles upon Life of Listeria monocytogenes,” Annals of Biological Research, Vol. 3, No. 7, 2012, pp. 3679-3685.
[35] K. Chitra and G. Annadurai, “Antimicrobial Activity of Wet Chemically Engineered Spherical Shaped ZnO Na noparticles on Food Borne Pathogen,” International Food Research Journal, Vol. 20, No. 1, 2013, pp. 59-64.
[36] J. M. Yousef and E. N. Dania “In Vitro Antibacterial Activity and Minimum Inhibitory Concentration of Zinc Oxide and Nano-Particle Zinc Oxide against Pathogenic Strains,” Journal of Health Science, Vol. 2, No. 4, 2012, pp. 38-42. doi:10.5923/

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.