Share This Article:

LAN Tool: A GIS Tool for the Improvement of Digital Elevation Models Using Drainage Network Attributes

Abstract Full-Text HTML Download Download as PDF (Size:3376KB) PP. 325-336
DOI: 10.4236/jgis.2013.54031    4,699 Downloads   7,410 Views   Citations


Digital Elevation Models (DEMs) are constructed using altitude point data and various interpolation techniques. The quality and accuracy of DEMs depend on data point density and the interpolation technique used. Usually however, altitude point data especially in plain areas do not provide realistic DEMs, mainly due to errors produced as a result of the interpolation technique, resulting in imprecise topographic representation of the landscape. Such inconsistencies, which are mainly in the form of surface depressions, are especially crucial when DEMs are used as input to hydrologic modeling for impact studies, as they have a negative impact on the model’s performance. This study presents a Geographical Information System (GIS) tool, named LAN (Line Attribute Network), for the improvement of DEM construction techniques and their spatial accuracy, using drainage network attributes. The developed tool does not alter the interpolation technique, but provides higher point density in areas where most DEM problems occur, such as lowland areas or places where artificial topographic features exist. Application of the LAN tool in two test sites showed that it provides considerable DEM improvement.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Gemitzi and O. Christou, "LAN Tool: A GIS Tool for the Improvement of Digital Elevation Models Using Drainage Network Attributes," Journal of Geographic Information System, Vol. 5 No. 4, 2013, pp. 325-336. doi: 10.4236/jgis.2013.54031.


[1] C. Legleiter and P. Kyriakidis, “Spatial Prediction of River Channel Topography by Kriging,” Earth Surface Processes and Landforms, Vol. 33, No. 6, 2008, pp.841-867. doi:10.1002/esp.1579
[2] V. Chaplot, “Impact of DEM Mesh Size and Soil Map Scale on SWAT Runoff, Sediment, and NO3-N Loads Predictions,” Journal of Hydrology, Vol. 312, No. 1-4, 2005, pp. 207-222.
[3] L. Kalin, R. S. Govindarajua and M. M. Hantush, “Effect of Geomorphologic Resolution on Modeling of Runoff Hydrograph and Sedimentograph over Small Watersheds,” Journal of Hydrology, Vol. 276, No. 1-4, 2003, pp. 89-111. doi:10.1016/S0022-1694(03)00072-6
[4] A. R. Darnell, A. A. Lovett, J. Barclay and R. A. Herd, “An Application Driven Approach to Terrain Model Construction,” International Journal of Geographical Information Science, Vol. 24, No. 8, 2010, pp. 1171-1191. doi:10.1080/13658810903318889
[5] J. Kiesel, N. Fohrer, B. Schmalz and M. J. White, “Incorporating Landscape Depressions and Tile Drainages of a Northern German Lowland Catchment into a Semi-Distributed Model,” Hydrological Processes, Vol. 24, No. 11, 2010, pp. 1472-1486. doi:10.1002/hyp.7607
[6] H. Achour, N. Rebai, J. Van Den Driessche and S. Bouaziz, “Modelling Uncertainty of Stream Networks Derived from Elevation Data Using Two Free Softwares: R and SAGA,” Journal of Geographic Information System, Vol. 4, No. 2, 2012, pp. 153-160. doi:10.4236/jgis.2012.42020
[7] D. Weber and E. Englund, “Evaluation and Comparison of Spatial Interpolators,” Mathematical Geology, Vol. 24, No. 4, 1992, pp. 381-391. doi:10.1007/BF00891270
[8] D. Weber and E. Englund, “Evaluation and Comparison of Spatial Interpolators II,” Mathematical Geology, Vol. 26, No. 5, 1994, pp. 589-603. doi:10.1007/BF02089243
[9] A. Carrara, G. Bitelli and R. Carla, “Comparison of Techniques for Generating Digital Terrain Models from Contour Lines,” International Journal of Geographical Information Science, Vol. 11, No. 5, 1997, pp. 451-473. doi:10.1080/136588197242257
[10] S. M. Robeson, “Spherical Methods for Spatial Interpolation: Review and Evaluation,” Cartography and Geographic Information Systems, Vol. 24, No. 1, 1997, pp. 3-20. doi:10.1559/152304097782438746
[11] F. J. Aguilar, F. Agüera, M. A. Aguilar and F. Carvajal, “Effects of Terrain Morphology, Sampling Density, and Interpolation Methods on Grid DEM Accuracy,” Photogrammetric Engineering and Remote Sensing, Vol. 71, No. 7, 2005, pp. 805-816.
[12] V. Chaplot, F. Darboux, H. Bourennane, S. Leguédois, N. Silvera and K. Phachomphon, “Accuracy of Interpolation Techniques for the Derivation of Digital Elevation Models in Relation to Landform Types and Data Density,” Geomorphology, Vol. 77, No. 1-2, 2006, pp. 126-141. doi:10.1016/j.geomorph.2005.12.010
[13] S. J. Buckley and H. L. Mitchell, “Integration, Validation and Point Spacing Optimization of Digital Elevation Models,” The Photogrammetric Record, Vol. 19, No. 108, 2004, pp. 277-295. doi:10.1111/j.0031-868X.2004.00287.x
[14] M. Karkee, B. L. Steward and S. A. Aziz, “Improving Quality of Public Domain Digital Elevation Models through Data Fusion,” Biosystems Engineering, Vol. 101, No. 3, 2008, pp. 293 -305. doi:10.1016/j.biosystemseng.2008.09.010
[15] W. Z. Shi and Y. Tian, “A Hybrid Interpolation Method for the Refinement of a Regular Grid Digital Elevation Model,” International Journal of Geographical Information Science, Vol. 20, No. 1, 2006, pp. 53-67. doi:10.1080/13658810500286943
[16] O. Bonin and D. Rousseaux, “Digital Terrain Model Computation from Contour Lines: How to Derive Quality Information from Artifact Analysis,” GeoInformatica, Vol. 9, No. 10, 2005, pp. 253-268. doi:10.1007/s10707-005-1284-2
[17] Y. Chen, J. P. Wilson, Q. Zhu and Q. Zhou, “Comparison of Drainage-Constrained Methods for DEM Generalization,” Computers and Geosciences, Vol. 48, 2012, pp. 41-49. doi:10.1016/j.cageo.2012.05.002
[18] W. Saunders, “Preparation of DEMs for Use in Environmental Modelling Analysis,” In: D. Maidment and D. Djokic, Eds., Hydrologic and Hydraulic Modelling Support with Geographic Information Systems, Environmental Systems Research Institute Inc., Redlands, 2000, pp. 29-51.
[19] J. N. Callow, K. P. Van Niel and G. S. Boggs, “How Does Modifying a DEM to Reflect Known Hydrology Affect Subsequent Terrain Analysis?” Journal of Hydrology, Vol. 332, No. 1-2, 2007, pp. 30-39. doi:10.1016/j.jhydrol.2006.06.020
[20] M. F. Hutchinson, “A New Procedure for Gridding Elevation and Stream Line Data with Automatic Removal of Spurious Pits,” Journal of Hydrology, Vol. 106, No. 3-4, 1989, pp. 211-232. doi:10.1016/0022-1694(89)90073-5
[21] Q. Zhou and Y. Chen, “Generalization of DEM for Terrain Analysis Using a Compound Method,” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 66, No. 1, 2011, pp. 38-45. doi:10.1016/j.isprsjprs.2010.08.005
[22] D. Souvaine, “Line Segment Intersection Using a Sweep Line Algorithm,” Tufts University, 2005.
[23] J. C. Davis, “Statistics and Data Analysis in Geology,” 2nd Edition, John Wiley and Sons, New York, 1986.
[24] G. S. Carter and U. Shankar, “Creating Rectangular Bathymetry Grids for Environmental Numerical Modelling of Gravel-Bed Rivers,” Applied Mathematical Modelling, Vol. 21, No. 11, 1997, pp. 699-708. doi:10.1016/S0307-904X(97)00094-2
[25] M. Winchell, R. Srinivasan, M. Di Luzio and J. Arnold, “ARCSWAT 2.0 Interface for SWAT 2005, User’s Guide,” Blackland Research Center, Texas Agricultural Research Station and USDA Agricultural Research Service, 2008.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.