Glucose transporters expression in the placental terminal villi of preeclampsia and intrauterine growth retardation complicated pregnancies


Introduction: Transmembrane sodium-independent glucose transporters (GLUTs) play an important role in both placental and fetal development by the providing transplacental glucose transport. Abnormal GLUT-1 and GLUT-3 placental expression could play a role in such late pregnancy complications development as preeclampsia and intrauterine growth retardation. Materials and Methods: Immunohistochemistry was performed to reveal patterns of GLUT-1 and GLUT-3 expression in the placental terminal villi compartments. Results: GLUT-1 syncytial expression in the terminal villi of severe PE cases (both with and without IUGR) was significantly lower in compare to control group. We also report about GLUT-3 both syncytial and endothelial expression in the near term and term placental terminal villi without significant difference between the study and control groups. Conclusion: other study should be performed to establish the nature of GLUT-1 downregulation in severe preeclampsia cases and whether GLUT-3 is expressed in the syncytiotrophoblast of near term and term placentas or not.

Share and Cite:

Dubova, E. , Pavlov, K. , Kulikova, G. , Shchegolev, A. and Sukhikh, G. (2013) Glucose transporters expression in the placental terminal villi of preeclampsia and intrauterine growth retardation complicated pregnancies. Health, 5, 100-104. doi: 10.4236/health.2013.57A4014.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Lo, J.O., Mission, J.F. and Caughey, A.B. (2013) Hypertensive disease of pregnancy and maternal mortality. Current Opinion in Obstetrics & Gynecology, 25, 124-132. doi:10.1097/GCO.0b013e32835e0ef5
[2] Grebennik, T.K. and Pavlovich, S.V. (2011) Possibilities for prediction of preeclampsia. Gynecology and Obstetrics, 6, 17-21.
[3] Kafkasli, A., Turkcuoglu, I. and Turhan, U. (2013) Maternal, fetal and perinatal characteristics of preeclampsia cases with and without abnormalities in uterine artery Doppler indexes. Journal of Maternal-Fetal and Neonatal Medicine, 26, 936-940. doi:10.3109/14767058.2013.766688
[4] Zamudio, S., Torricos, T., Fik, E., Oyala, M., Echalar L., Pullockaran, J., Tutino, E., Martin, B., Belliappa, S., Balanza, E. and Illsley, N.P. (2010) Hypoglycemia and the origin of hypoxia-induced reduction in human fetal growth. PLoS ONE, 5, e8551. doi:10.1371/journal.pone.0008551
[5] Vardhana, P. and Illsley, N. (2002) Transepithelial glucose transport and metabolism in BeWo choriocarcinoma cells. Placenta, 23, 653-660. doi:10.1053/plac.2002.0857
[6] Baumann, M.U., Deborde, S. and Illsley, N.P. (2002) Placental glucose transfer and fetal growth. Endocrine, 19, 13-22. doi:10.1385/ENDO:19:1:13
[7] Khan, H., Kusakabe, K.T., Wakitani, S., Hiyama, M. and Kiso, Y.J. (2011) Quantitative expression and immunohistochemical detection of glucose transporters, GLUT1 and GLUT3 in the rabbit placenta during successful pregnancy. The Journal of Veterinary Medical Science, 73, 1177-1183.
[8] Aleksandrova, N.V., Dubova, E.A., Baev, O.R., Shchegolev, A.I. and Sukhikh, G.T. (2012) Expression of carbohydrate metabolism markers in full-term spontaneous and induced pregnancy. Bulletin of Experimental Biology and Medicine, 153, 540-544. doi:10.1007/s10517-012-1762-0
[9] Jansson, T., Wennergren, M. and Illsley, N.P. (1993) Glucose transporter protein expression in human placenta throughout gestation and in intrauterine growth retardation. The Journal of Clinical Endocrinology & Metabolism, 77, 1554-1562. doi:10.1210/jc.77.6.1554
[10] Baumann, M., Zamudio, S. and Illsley, N. (2007) Hypoxic upregulation of glucose transporters in BeWo choriocarcinoma cells is mediated by hypoxia-inducible factor-1 (HIF-1). American Journal of Physiology, 293, 477-485. doi:10.1152/ajpcell.00075.2007
[11] Esterman, A., Greco, M.A., Mitani, Y., Finlay, T.H. and Ismail-Beigi, F. (1997) The effect of hypoxia on human trophoblast in culture: Morphology, glucose transport and metabolism. Placenta, 18, 129-136. doi:10.1016/S0143-4004(97)90084-9
[12] Hauguel-De Mouzon, S., Challier, J., Kacemi, A., Cauzac, M., Malek, A. and Girard, J. (1997) The GLUT3 glucose transporter isoform is differentially expressed within human placental cell types. The Journal of Clinical Endocrinology & Metabolism, 82, 2689-2694. doi:10.1210/jc.82.8.2689
[13] Barros, L.F., Yudilevich, D.L., Jarvis, S.M., Beaumont, N. and Baldwin, S.A. (1995) Quantitation and immunolocalization of glucose transporters in the human placenta. Placenta, 16, 623-633. doi:10.1016/0143-4004(95)90031-4
[14] Browna, K., Hellerb, D.S., Zamudioc, S. and Illsleya, N.P. (2011) Glucose transporter 3 (GLUT3) protein expression in human placenta across gestation. Placenta, 32, 1041-1049. doi:10.1016/j.placenta.2011.09.014
[15] Mairesse, J., Lesage, J., Breton, C., Bréant, B., Hahn, T., Darnaudéry, M., Dickson, S.L., Seckl, J., Blondeau, B., Vieau, D., Maccari, S. and Viltart, O. (2007) Maternal stress alters endocrine function of the feto-placental unit in rats. American Journal of Physiology—Endocrinology and Metabolism, 292, E1526-E1533. doi:10.1152/ajpendo.00574.2006

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.