Share This Article:

GABA Attenuates L-DOPA-Induced Striatal and Nigral ERK1/2 Signaling in a Rat Model of Parkinson’s Disease

Full-Text HTML XML Download Download as PDF (Size:1373KB) PP. 320-330
DOI: 10.4236/jbbs.2013.33032    3,630 Downloads   5,355 Views   Citations

ABSTRACT

L-DOPA is the primary drug used to treat Parkinson’s disease (PD) symptoms, but motor side effects limit its long term use. Previous experimental studies show that L-DOPA acts on supersensitive D1 receptors in the basal ganglia to induce extracellular signal-regulated kinases 1 and 2 (ERK1/2), a pair of MAP-kinase proteins that may be involved in induction of motor side effects. Since GABA is known to be intimately involved in basal ganglia function, we investigated whether elevating GABA levels via a GABA-transaminase (GABA-T) inhibitor affects the L-DOPA-induced ERK1/2 phosphorylation in the striatum and substantia nigra (SN) using a rat model of PD. Unilateral dopaminergic lesions of median forebrain bundle neurons were done using the neurotoxin 6-hydroxydopamine. Rats were prescreened for the extent of the lesion by apomorphine-induced rotation test. Lesioned rats were treated with aminooxyacetic acid (AOAA, a GABA-T inhibitor), L-DOPA, or in combination. Immunohistochemistry of tyrosine hydroxylase (TH, a direct indicator of dopaminergic lesion), substance P (SP, an indirect marker that decreases after lesion), and phospho-ERK1/2 was done using slices at the level of striatum and SN. Unilateral dopaminergic lesioned rats, as expected, exhibited >90% TH loss and a modest SP loss in the striatum and SN. L-DOPA alone induced a 343% and 330% increase in phospho-ERK1/2 in the striatum and SN, respectively. We report here a novel finding that pretreatment with AOAA attenuated the L-DOPA induced increase in phospho-ERK1/2 by 62% and 68% in the striatum and SN, respectively, suggesting a DA-GABA-ERK1/2 link in the therapeutic and/or side effects of L-DOPA.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

S. Lynch and S. Sivam, "GABA Attenuates L-DOPA-Induced Striatal and Nigral ERK1/2 Signaling in a Rat Model of Parkinson’s Disease," Journal of Behavioral and Brain Science, Vol. 3 No. 3, 2013, pp. 320-330. doi: 10.4236/jbbs.2013.33032.

References

[1] C. R. Gerfen, T. M. Engber, L. C. Mahan, Z. Susel, T. N. Chase, F. J. Monsma and D. R. Sibley, “D1 and D2 Dopamine Receptor-Regulated Gene Expression of Striatonigral and Striatopallidal Neurons,” Science, Vol. 250, No. 8986, 1990, pp. 1429-1432.
[2] C. R. Gerfen, “The Neostriatal Mosaic: Multiple Levels of Compartmental Organization in the Basal Ganglia,” Annual Review of Neuroscience, Vol. 15, No. 4, 1992, pp. 285-320.
[3] C. Le Moine and B. Bloch, “D1 and D2 Dopamine Receptor Gene Expression in the Rat Striatum: Sensitive cRNA Probes Demonstrate Prominent Segregation of D1 and D2 mRNAs in Distinct Neuronal Populations of the Dorsal and Ventral Striatum,” Journal of Computational Neurology, Vol. 355, No. 3, 1995, pp. 418-426.
[4] S. Gong, C. Zheng, M. L. Doughty, K. Losos, N. Didkovsky, U. B. Schambra, N. J. Nowak, A. Joyner, G. Leblanc, M. E. Hatten and N. Heintz, “A Gene Expression Atlas of the Central Nervous System Based on Bacterial Artificial Chromosomes,” Nature, Vol. 425, No. 6961, 2003, pp. 917-925.
[5] C. B. Brink, B. H. Harvey, J. Bodenstein, D. P. Venter and D. W. Oliver, “Recent Advances in Drug Action and Therapeutics: Relevance of Novel Concepts in G-Protein-Coupled Receptor and Signal Transduction Pharmacology,” British Journal of Clinical Pharmacology, Vol. 57, No. 4, 2004, pp. 373-387. doi:10.1111/j.1365-2125.2003.02046.x
[6] C. R. Gerfen, S. Miyachi, R. Paletzki and P. Brown, “D1 Dopamine Receptor Supersensitivity in the Dopamine-Depleted Striatum Results from a Switch in the Regulation of ERK1/2/MAP Kinase,” Journal of Neuroscience, Vol. 22, No. 12, 2002, pp. 5042-5054.
[7] C. R. Gerfen, “D1 Dopamine Receptor Supersensitivity in the Dopamine-Depleted Striatum: Animal Model of Parkinson’s Disease,” Neuroscientist, Vol. 9, No. 6, 2003, pp. 455-462.
[8] D. S. Kim, R. D. Palmiter, A. Cummins and C. R. Gerfen, “Reversal of Supersensitive Striatal Dopamine D1 Receptor Signaling and Extracellular Signal-Regulated Kinase Activity in Dopamine-Deficient Mice,” Neuroscience, Vol. 137, No. 4, 2006, pp. 1381-1388. doi:10.1016/j.neuroscience.2005.10.054
[9] G. M. Thomas and R. L. Huganir, “MAPK Cascade Signalling and Synaptic Plasticity,” Nature Reviews Neuroscience, Vol. 5, No. 3, 2004, pp. 173-183. doi:10.1038/nrn1346
[10] M. Costa-Mattioli, W. S. Sossin, E. Klann and N. Sonenberg, “Translational Control of Long-Lasting Synaptic Plasticity and Memory,” Neuron, Vol. 61, No. 1, 2009, pp. 10-26. doi:10.1016/j.neuron.2008.10.055
[11] C. R. Gerfen, “Molecular Effects of Dopamine on Striatal Projection Pathways,” Trends in Neurosciences, Vol. 23, Suppl. 10, 2000, pp. S64-S70.
[12] J. W. Mink, “The Basal Ganglia and Involuntary Movements: Impaired Inhibition of Competing Motor Patterns,” Archives of Neurology, Vol. 60, No. 10, 2003, pp. 1365-1368. doi:10.1001/archneur.60.10.1365
[13] C. D. Marsden and J. D. Parkes, “Success and Problems of Long-Term Levodopa Therapy in Parkinson’s Disease,” The Lancet, Vol. 1, No. 8007, 1977, pp. 345-349. doi:10.1016/S0140-6736(77)91146-1
[14] T. M. Engber, Z. Susel, S. Kuo, C. R. Gerfen and T. N. Chase, “Levodopa Replacement Therapy Alters Enzyme Activities in Striatum and Neuropeptide Content in Striatal Output Regions of 6-Hydroxydopamine Lesioned Rats,” Brain Research, Vol. 552, No. 1, 1991, pp. 113118.
[15] M. Lebel, P. Robinson and M. Cyr, “Canadian Association of Neurosciences Review: The Role of Dopamine Receptor Function in Neurodegenerative Diseases,” Canadian Journal of Neurological Sciences, Vol. 34, No. 1, 2007, pp. 18-29.
[16] A. Berthet and E. Bezard, “Dopamine Receptors and LDOPA-Induced Dyskinesia,” Parkinsonism & Related Disorders, Vol. 15, Suppl. 4, 2009, pp. S8-12. doi:10.1016/S1353-8020(09)70827-2
[17] A. Nadjar, C. R. Gerfen and E. Bezard, “Priming for LDOPA-Induced Dyskinesia in Parkinson’s Disease: A Feature Inherent to the Treatment or the Disease?” Progress in Neurobiology, Vol. 87, No. 1, 2009, pp. 1-9. doi:10.1016/j.pneurobio.2008.09.013
[18] T. N. Chase, M. M. Mouradian and T. M. Engber, “Motor Response Complications and the Function of Striatal Efferent Systems,” Neurology, Vol. 43, No. 12, Suppl. 6, 1993, pp. S23-S27.
[19] J. A. Obeso, C. W. Olanow and J. G. Nutt, “Levodopa Motor Complications in Parkinson’s Disease,” Trends in Neurosciences, Vol. 23, Suppl. 10, 2000, pp. S1-S7.
[20] J. E. Ahlskog and M. D. Muenter, “Frequency of Levodopa-Related Dyskinesias and Motor Fluctuations as Estimated from the Cumulative Literature,” Movement Disorders, Vol. 16, No. 3, 2001, pp. 448-458. doi:10.1002/mds.1090
[21] M. Feyder, A. Bonito-Oliva and G. Fisone, “L-DOPAInduced Dyskinesia and Abnormal Signaling in Striatal Medium Spiny Neurons: Focus on Dopamine D1 Receptor-Mediated Transmission,” Frontiers in Behavioral Neuroscience, Vol. 5, 2011, p. 71.
[22] S. T. Papadeas, B. L. Blake, D. J. Knapp and G. R. Breese, “Sustained Extracellular Signal-Regulated Kinase 1/2 Phosphorylation in Neonate 6-Hydroxydopamine-Lesioned Rats after Repeated D1-Dopamine Receptor Agonist Administration: Implications for NMDA Receptor Involvement,” Journal of Neuroscience, Vol. 24, No. 26, 2004, pp. 5863-5876. doi:10.1523/JNEUROSCI.0528-04.2004
[23] E. Bezard, C. E. Gross, L. Qin, V. V. Gurevich, J. L. Benovic and E. V. Gurevich, “L-DOPA Reverses the MPTP-Induced Elevation of the Arrestin2 and GRK6 Expression and Enhanced ERK Activation in Monkey Brain,” Neurobiology of Disease, Vol. 18, No. 2, 2005, pp. 323-335. doi:10.1016/j.nbd.2004.10.005
[24] J. E. Westin, L. Vercammen, E. M. Strome, C. Konradi and M. A. Cenci, “Spatiotemporal Pattern of Striatal ERK1/2 Phosphorylation in a Rat Model of L-DOPA-Induced Dyskinesia and the Role of Dopamine D1 Receptors,” Biological Psychiatry, Vol. 62, No. 7, 2007, pp. 800-810. doi:10.1016/j.biopsych.2006.11.032
[25] N. Pavon, A. B. Martin, A. Mendialdua and R. Moratalla, “ERK Phosphorylation and FosB Expression Are Associated with L-DOPA-Induced Dyskinesia in Hemiparkinsonian Mice,” Biological Psychiatry, Vol. 59, No. 1, 2006, pp. 64-74. doi:10.1016/j.biopsych.2005.05.044
[26] E. Santini, E. Valjent, A. Usiello, M. Carta, A. Borgkvist, J. A. Girault, D. Herve, P. Greengard and G. Fisone, “Critical Involvement of cAMP/DARPP-32 and Extracellular Signal-Regulated Protein Kinase Signaling in LDOPA-Induced Dyskinesia,” Journal of Neuroscience, Vol. 27, No. 26, 2007, pp. 6995-7005. doi:10.1523/JNEUROSCI.0852-07.2007
[27] M. A. Cenci, K. E. Ohlin and D. Rylander, “Plastic Effects of L-DOPA Treatment in the Basal Ganglia and Their Relevance to the Development of Dyskinesia,” Parkinsonism & Related Disorders, Vol. 15, Suppl. 3, 2009, pp. S59-63. doi:10.1016/S1353-8020(09)70782-5
[28] C. Moreno and S. Sivam, “The Time Course of D1 Agonist Induced Striatonigral ERK1/2 Signaling in a Rat Model of Parkinson’s Disease,” Journal of Behavioral and Brain Science, Vol. 2, No. 1, 2012, pp. 1-9. doi:10.4236/jbbs.2012.21001
[29] A. Galvan and T. Wichmann, “GABAergic Circuits in the Basal Ganglia and Movement Disorders,” Progress in Brain Research, Vol. 160, No. 3, 2007, pp. 287-312.
[30] J. M. Tepper, E. D. Abercrombie and J. P. Bolam, “Basal Ganglia Macrocircuits,” Progress in Brain Research, Vol. 160, 2007, pp. 3-7.
[31] U. Misgeld, G. Drew and Y. Yanovsky, “Presynaptic Modulation of GABA Release in the Basal Ganglia,” Progress in Brain Research, Vol. 160, 2007, pp. 245-259.
[32] T. Trevitt, B. Carlson, M. Correa, A. Keene, M. Morales and J. D. Salamone, “Interactions between Dopamine D1 Receptors and Gamma-Aminobutyric Acid Mechanisms in Substantia Nigra Pars Reticulata of the Rat: Neurochemical and Behavioral Studies,” Psychopharmacology, Vol. 159, No. 3, 2002, pp. 229-237. doi:10.1007/s002130100908
[33] M. Ochi, S. Shiozaki and H. Kase, “L-DOPA-Induced Modulation of GABA and Glutamate Release in Substantia Nigra Pars Reticulata in a Rodent Model of Parkinson’s Disease,” Synapse, Vol. 52, No. 2, 2004, pp. 163165. doi:10.1002/syn.20006
[34] J. Katz, K. M. Nielsen and J. J. Soghomonian, “Comparative Effects of Acute or Chronic Administration of Levodopa to 6-Hydroxydopamine-Lesioned Rats on the Expression of Glutamic acid Decarboxylase in the Neostriatum and GABAA Receptors Subunits in the Substantia Nigra, Pars Reticulata,” Neuroscience, Vol. 132, No. 3, 2005, pp. 833-842. doi:10.1016/j.neuroscience.2004.12.032
[35] H. Wang, J. Katz, P. Dagostino and J. J. Soghomonian, “Unilateral 6-Hydroxydopamine Lesion of Dopamine Neurons and Subchronic L-DOPA Administration in the Adult Rat Alters the Expression of the Vesicular GABA Transporter in Different Subsets of Striatal Neurons and in the Substantia Nigra, Pars Reticulata,” Neuroscience, Vol. 145, No. 2, 2007, pp. 727-737. doi:10.1016/j.neuroscience.2006.12.001
[36] C. Rangel-Barajas, I. Silva, M. Garcia-Ramirez, E. Sanchez-Lemus, L. Floran, J. Aceves, D. Erlij and B. Floran, “6-OHDA-Induced Hemiparkinsonism and Chronic L-DOPA Treatment Increase Dopamine D1-Stimulated [3H]-GABA Release and [3H]-cAMP Production in Substantia Nigra Pars Reticulata of the Rat,” Neuropharmacology, Vol. 55, No. 5, 2008, pp. 704-711. doi:10.1016/j.neuropharm.2008.06.002
[37] N. Yamamoto and J. J. Soghomonian, “Time-Course of SKF-81297-Induced Increase in Glutamic Acid Decarboxylase 65 and 67 mRNA Levels in Striatonigral Neurons and Decrease in GABAA Receptor alpha1 Subunit mRNA Levels in the Substantia Nigra, Pars Reticulata, in Adult Rats with a Unilateral 6-Hydroxydopamine Lesion,” Neuroscience, Vol. 154, No. 3, 2008, pp. 10881099. doi:10.1016/j.neuroscience.2008.04.015
[38] C. Rangel-Barajas, I. Silva, L. M. Lopez-Santiago, J. Aceves, D. Erlij and B. Floran, “L-DOPA-Induced Dyskinesia in Hemiparkinsonian Rats Is Associated with Up-Regulation of Adenylyl Cyclase Type V/VI and Increased GABA Release in the Substantia Nigra Reticulata,” Neurobiology of Disease, Vol. 41, No. 1, 2011, pp. 51-61. doi:10.1016/j.nbd.2010.08.018
[39] Y. Cui, R. M. Costa, G. G. Murphy, Y. Elgersma, Y. Zhu, D. H. Gutmann, L. F. Parada, I. Mody and A. J. Silva, “Neurofibromin Regulation of ERK Signaling Modulates GABA Release and Learning,” Cell, Vol. 135, No. 3, 2008, pp. 549-560. doi:10.1016/j.cell.2008.09.060
[40] G. Gangarossa, J. Espallergues, A. de Kerchove d’Exaerde, S. El Mestikawy, C. R. Gerfen, D. Herve, J. A. Girault and E. Valjent, “Distribution and Compartmental Organization of GABAergic Medium-Sized Spiny Neurons in the Mouse Nucleus Accumbens,” Front Neural Circuits, Vol. 7, 2013, p. 22. doi:10.3389/fncir.2013.00022
[41] G. Paxinos and C. Watson, “The Rat Brain in Stereotaxic Coordinates,” 5th Edition, Elsevier Academic Press, New York, 2005.
[42] G. R. Breese, A. A. Baumeister, T. J. McCown, S. G. Emerick, G. D. Frye, K. Crotty and R. A. Mueller, “Behavior Differences between Neonatal and Adult 6-Hydrocydopamine-Treated Rats to Dopamine Agonists: Relevance to Neurological Symptoms in Clinical Syndromes with Reduced Brain Dopamine,” Journal of Pharmacology and Experimental Therapeutics, Vol. 231, No. 2, 1984, pp. 343-354.
[43] S. P. Sivam and H. J. Hong, “GABAergic Regulation of Enkephalin in Rat Striatum: Alterations in Met5-Enkephalin Level, Precursor Content and Preproenkephalin Messenger RNA Abundance,” Journal of Pharmacology and Experimental Therapeutics, Vol. 237, No. 1, 1985, pp. 326-331.
[44] S. J. Li, S. P. Sivam, J. F. McGinty, Y. S. Huang and J. S. Hong, “Dopaminergic Regulation of Tachykinin Metabolism in the Striatonigral Pathway,” Journal of Pharmacology and Experimental Therapeutics, Vol. 243, No. 2, 1987, pp. 792-798.
[45] M. Andersson, C. Konradi and M. A. Cenci, “cAMP Response Element-Binding Protein Is Required for Dopamine-Dependent Gene Expression in the Intact but Not the Dopamine-Denervated Striatum,” Journal of Neuroscience, Vol. 21, No. 24, 2001, pp. 9930-9943.
[46] L. K. Nisenbaum, W. R. Crowley and S. T. Kitai, “Partial Striatal Dopamine Depletion Differentially Affects Striatal Substance P and Enkephalin Messenger RNA Expression,” Brain Research. Molecular Brain Research, Vol. 37, No. 1-2, 1996, pp. 209-216. doi:10.1016/0169-328X(95)00317-L
[47] S. P. Sivam, G. R. Breese, J. E. Krause, T. C. Napier, R. A. Mueller and J. S. Hong, “Neonatal and adult 6-Hydroxydopamine-Induced Lesions Differentially Alter Tachykinin and Enkephalin Gene Expression,” Journal of Neurochemistry, Vol. 49, No. 5, 1987, pp. 1623-1633. doi:10.1111/j.1471-4159.1987.tb01036.x
[48] A. I. Levey, S. M. Hersch, D. B. Rye, R. K. Sunahara, H. B. Niznik, C. A. Kitt, D. L. Price, R. Maggio, M. R. Brann and B. J. Ciliax, “Localization of D1 and D2 Dopamine Receptors in Brain with Subtype-Specific Antibodies,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 90, No. 19, 1993, pp. 8861-8865. doi:10.1073/pnas.90.19.8861
[49] C. R. Gerfen, “Dopamine-Mediated Gene Regulation in Models of Parkinson’s Disease,” Annals of Neurology, Vol. 47, No. 4, 2000, pp. S42-S50.
[50] J. Bertran-Gonzalez, C. Bosch, M. Maroteaux, M. Matamales, D. Herve, E. Valjent and J. A. Girault, “Opposing Patterns of Signaling Activation in Dopamine D1 and D2 Receptor-Expressing Striatal Neurons in Response to Cocaine and Haloperidol,” The Journal of Neuroscience, Vol. 28, No. 22, 2008, pp. 5671-5685. doi:10.1523/JNEUROSCI.1039-08.2008
[51] E. Santini, C. Alcacer, S. Cacciatore, M. Heiman, D. Herve, P. Greengard, J. A. Girault, E. Valjent and G. Fisone, “L-DOPA Activates ERK Signaling and Phosphorylates Histone H3 in the Striatonigral Medium Spiny Neurons of Hemiparkinsonian Mice,” Journal of Neurochemistry, Vol. 108, No. 3, 2009, pp. 621-633. doi:10.1111/j.1471-4159.2008.05831.x
[52] C. R. Gerfen, R. Paletzki and P. Worley, “Differences between Dorsal and Ventral Striatum in Drd1a Dopamine Receptor Coupling of Dopamineand cAMP-Regulated Phosphoprotein-32 to Activation of Extracellular Signal-Regulated Kinase,” The Journal of Neuroscience, Vol. 28, No. 28, 2008, pp. 7113-7120. doi:10.1523/JNEUROSCI.3952-07.2008
[53] J. D. Berke, R. F. Paletzki, G. J. Aronson, S. E. Hyman and C. R. Gerfen, “A Complex Program of Striatal Gene Expression Induced by Dopaminergic Stimulation,” Journal of Neuroscience, Vol. 18, No. 14, 1998, pp. 53015310.
[54] C. Guigoni, E. Doudnikoff, Q. Li, B. Bloch and E. Bezard, “Altered D1 Dopamine Receptor Trafficking in Parkinsonian and Dyskinetic Non-Human Primates,” Neurobiology of Disease, Vol. 26, No. 2, 2007, pp. 452-463. doi:10.1016/j.nbd.2007.02.001
[55] A. Berthet, G. Porras, E. Doudnikoff, H. Stark, M. Cador, E. Bezard and B. Bloch, “Pharmacological Analysis Demonstrates Dramatic Alteration of D1 Dopamine Receptor Neuronal Distribution in the Rat Analog of L-DOPA-Induced Dyskinesia,” Journal of Neuroscience, Vol. 29, No. 15, 2009, pp. 4829-4835. doi:10.1523/JNEUROSCI.5884-08.2009
[56] S. Sivam and C. Moreno, “D1 Antagonist Blocks L-DOPA-Induced Striatal and Nigral ERK1/2 Phosphorylation in a Rat Model of Parkinson’s Disease,” Parkinsonism & Related Disorders, Vol. 15, Suppl. 2, 2009, p. S113. doi:10.1016/S1353-8020(09)70442-0
[57] H. S. Lindgren, K. E. Ohlin and M. A. Cenci, “Differential Involvement of D1 and D2 Dopamine Receptors in L-DOPA-Induced Angiogenic Activity in a Rat Model of Parkinson’s Disease,” Neuropsychopharmacology, Vol. 34, No. 12, 2009, pp. 2477-2488. doi:10.1038/npp.2009.74
[58] S. Schuster, A. Nadjar, J. T. Guo, Q. Li, C. Ittrich, B. Hengerer and E. Bezard, “The 3-Hydroxy-3-Methylglutaryl-CoA Reductase Inhibitor Lovastatin Reduces Severity of L-DOPA-Induced Abnormal Involuntary Movements in Experimental Parkinson’s Disease,” Journal of Neuroscience, Vol. 28, No. 17, 2008, pp. 4311-4316. doi:10.1523/JNEUROSCI.4720-07.2008
[59] H. Kita and S. T. Kitai, “Glutamate Decarboxylase Immunoreactive Neurons in Rat Neostriatum: Their Morphological Types and Populations,” Brain Research, Vol. 447, No. 2, 1988, pp. 346-352. doi:10.1016/0006-8993(88)91138-9
[60] T. Gonzalez-Hernandez and M. Rodriguez, “Compartmental Organization and Chemical Profile of Dopaminergic and GABAergic Neurons in the Substantia Nigra of the Rat,” Journal of Computational Neurology, Vol. 421, No. 1, 2000, pp. 107-135.
[61] E. Santini, E. Valjent and G. Fisone, “Parkinson’s Disease: Levodopa-Induced Dyskinesia and Signal Transduction,” FEBS Journal, Vol. 275, No. 7, 2008, pp. 13921399. doi:10.1111/j.1742-4658.2008.06296.x
[62] J. Aceves, B. Floran, D. Martinez-Fong, A. Sierra, S. Hernandez and S. Mariscal, “L-Dopa Stimulates the Release of [3H]Gamma-Aminobutyric Acid in the Basal Ganglia of 6-Hydroxydopamine Lesioned Rats,” Neuroscience Letters, Vol. 121, No. 1-2, 1991, pp. 223-226. doi:10.1016/0304-3940(91)90690-U
[63] P. Barroso-Chinea and E. Bezard, “Basal Ganglia Circuits Underlying the Pathophysiology of Levodopa-Induced Dyskinesia,” Frontiers in Neuroanatomy, Vol. 4, 2010, p. 131.
[64] K. K. Yung, J. P. Bolam, A. D. Smith, S. M. Hersch, B. J. Ciliax and A. I. Levey, “Immunocytochemical Localization of D1 and D2 Dopamine Receptors in the Basal Ganglia of the Rat: Light and Electron Microscopy,” Neuroscience, Vol. 65, No. 3, 1995, pp. 709-730. doi:10.1016/0306-4522(94)00536-E
[65] E. Valjent, V. Pascoli, P. Svenningsson, S. Paul, H. Enslen, J. C. Corvol, A. Stipanovich, J. Caboche, P. J. Lombroso, A. C. Nairn, P. Greengard, D. Herve and J. A. Girault, “Regulation of a Protein Phosphatase Cascade Allows Convergent Dopamine and Glutamate Signals to Activate ERK in the Striatum,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 102, No. 2, 2005, pp. 491-496. doi:10.1073/pnas.0408305102
[66] H. Ikeda, A. Kotani, N. Koshikawa and A. R. Cools, “Differential Role of GABAA and GABAB Receptors in Two Distinct Output Stations of the Rat Striatum: Studies on the Substantia Nigra Pars Reticulata and the Globus Pallidus,” Neuroscience, Vol. 167, No. 1, 2010, pp. 31-39. doi:10.1016/j.neuroscience.2010.01.054
[67] G. L. Snyder, G. Fisone and P. Greengard, “Phosphorylation of DARPP-32 Is Regulated by GABA in Rat Striatum and Substantia Nigra,” Journal of Neurochemistry, Vol. 63, No. 5, 1994, pp. 1766-1771. doi:10.1046/j.1471-4159.1994.63051766.x
[68] C. C. Ouimet, P. E. Miller, H. C. Hemmings Jr., S. I. Walaas and P. Greengard, “DARPP-32, a Dopamineand Adenosine 3’:5’-Monophosphate-Regulated Phosphoprotein Enriched in Dopamine-Innervated Brain Regions. III. Immunocytochemical Localization,” Journal of Neuroscience, Vol. 4, No. 1, 1984, pp. 111-124.
[69] Y. Ding, L. Won, J. P. Britt, S. A. Lim, D. S. McGehee and U. J. Kang, “Enhanced Striatal Cholinergic Neuronal Activity Mediates L-DOPA-Induced Dyskinesia in Parkinsonian Mice,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 108, No. 2, 2011, pp. 840-845. doi:10.1073/pnas.1006511108
[70] E. Santini, M. Feyder, G. Gangarossa, H. S. Bateup, P. Greengard and G. Fisone, “Dopamineand cAMP-Regulated Phosphoprotein of 32-kDa (DARPP-32)-Dependent Activation of ERK and Mammalian Target of Rapamycin Complex 1 (TORC1) Signaling in Experimental Parkinsonism,” Journal of Biological Chemistry, Vol. 287, 2012, pp. 27806-27812. doi:10.1074/jbc.M112.388413
[71] R. A. Hauser, J. P. Hubble and D. D. Truong, “Randomized Trial of the Adenosine A2A Receptor Antagonist Istradefylline in Advanced PD,” Neurology, Vol. 61, No. 3, 2003, pp. 297-303. doi:10.1212/01.WNL.0000081227.84197.0B
[72] H. Kase, S. Aoyama, M. Ichimura, K. Ikeda, A. Ishii, T. Kanda, K. Koga, N. Koike, M. Kurokawa, Y. Kuwana, A. Mori, J. Nakamura, H. Nonaka, M. Ochi, M. Saki, J. Shimada, T. Shindou, S. Shiozaki, F. Suzuki, M. Takeda, K. Yanagawa, P. J. Richardson, P. Jenner, P. Bedard, E. Borrelli, R. A. Hauser and T. N. Chase, “Progress in Pursuit of Therapeutic A2A Antagonists: The Adenosine A2A Receptor Selective Antagonist KW6002: Research and Development toward a Novel Nondopaminergic Therapy for Parkinson’s Disease,” Neurology, Vol. 61, Suppl 6, 2003, pp. S97-S100. doi:10.1212/01.WNL.0000095219.22086.31
[73] P. Jenner, “Istradefylline, a Novel Adenosine A2A Receptor Antagonist, for the Treatment of Parkinson’s Disease,” Expert Opinion on Investigational Drugs, Vol. 14, No. 6, 2005, pp. 729-738. doi:10.1517/13543784.14.6.729
[74] A. Pinna, J. Wardas, N. Simola and M. Morelli, “New Therapies for the Treatment of Parkinson’s Disease: Adenosine A2A Receptor Antagonists,” Life Sciences, Vol. 77, No. 26, 2005, pp. 3259-3267. doi:10.1016/j.lfs.2005.04.029
[75] M. Ochi, S. Shiozaki and H. Kase, “Adenosine A2A Receptor-Mediated Modulation of GABA and Glutamate Release in the Output Regions of the Basal Ganglia in a Rodent Model of Parkinson’s Disease,” Neuroscience, Vol. 127, No. 1, 2004, pp. 223-231. doi:10.1016/j.neuroscience.2004.04.050
[76] N. Yamamoto, R. C. Pierce and J. J. Soghomonian, “Subchronic Administration of L-DOPA to Adult Rats with a Unilateral 6-Hydroxydopamine Lesion of Dopamine Neurons Results in a Sensitization of Enhanced GABA Release in the Substantia Nigra, Pars Reticulata,” Brain Research, Vol. 1123, No. 1, 2006, pp. 196-200. doi:10.1016/j.brainres.2006.09.027
[77] P. Huot, T. H. Johnston, J. B. Koprich, S. H. Fox and J. M. Brotchie, “The Pharmacology of L-DOPA-Induced Dyskinesia in Parkinson’s Disease,” Pharmacological Reviews, Vol. 65, No. 1, 2013, pp. 171-222.
[78] T. Wichmann, M. A. Kliem and M. R. DeLong, “Antiparkinsonian and Behavioral Effects of Inactivation of the Substantia Nigra Pars Reticulata in Hemiparkinsonian Primates,” Experimental Neurology, Vol. 167, No. 2, 2001, pp. 410-424. doi:10.1006/exnr.2000.7572
[79] B. B. Carlson, S. Behrstock, A. J. Tobin and J. D. Salamone, “Brain Implantations of Engineered GABA-Releasing Cells Suppress Tremor in an Animal Model of Parkinsonism,” Neuroscience, Vol. 119, No. 4, 2003, pp. 927-932. doi:10.1016/S0306-4522(03)00218-5
[80] C. C. Tenn and L. P. Niles, “Mechanisms Underlying the Antidopaminergic Effect of Clonazepam and Melatonin in Striatum,” Neuropharmacology, Vol. 36, No. 11-12, 1997, pp. 1659-1663. doi:10.1016/S0028-3908(97)00165-2
[81] C. Winkler, C. Bentlage, G. Nikkhah, M. Samii and A. Bjorklund, “Intranigral Transplants of GABA-Rich Striatal Tissue Induce Behavioral Recovery in the Rat Parkinson Model and Promote the Effects Obtained by Intrastriatal Dopaminergic Transplants,” Experimental Neurology, Vol. 155, No. 2, 1999, pp. 165-186. doi:10.1006/exnr.1998.6916

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.