Carbon Mono and Dioxide Hydrogenation over Pure and Metal Oxide Decorated Graphene Oxide Substrates: Insight from DFT

DOI: 10.4236/graphene.2013.23016   PDF   HTML   XML   3,451 Downloads   7,303 Views   Citations


Based on first principles density functional theory calculations we explore the energetics of the conversion of carbon mono and dioxide to methane over graphene oxide surfaces. Similar to therecently discovered hydration of various organic species over this catalyst, the transfer of hydrogenatoms from hydroxyl groups of graphene oxide provide a step by step transformation hydrogenationof carbon oxides. Estimated yields of modeled reactions at room temperature are about 0.01% for thecarbon mono and dioxide. For the modeling of graphene oxide/metal oxide composites, calculationsin the presence of MO2(where M = V, Cr, Mn, Fe) have been performed. Results of these calculations demonstrate significant decreases of the energy costs and increases of reaction yields to 0.07%, which is comparable to the efficiency of these reactions over platinum and ruthenium-based photocatalysts. Increasing the temperature to the value 100°C should provide the total conversion of carbon mono and dioxides.

Share and Cite:

D. W. Boukhvalov, "Carbon Mono and Dioxide Hydrogenation over Pure and Metal Oxide Decorated Graphene Oxide Substrates: Insight from DFT," Graphene, Vol. 2 No. 3, 2013, pp. 109-114. doi: 10.4236/graphene.2013.23016.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. Schaetz, M. Zeltner and W. J. Stark, “Carbon Modifications and Surfaces for Catalytic Organic Transformations,” ACS Catalysis, Vol. 2, No. 6, 2012, pp. 1267- 1284. doi:10.1021/cs300014k
[2] A. K. Geim, “Graphene: Status and Prospects,” Science, Vol. 324, No. 5934, 2009, pp. 1530-1534.
[3] M. Segal, “Selling Graphene by the Ton,” Nature Nanotechnology, Vol. 4, No. 10, 2009, pp. 612-614. doi:10.1038/nnano.2009.279
[4] S. Yang, X. Feng, X. Wang and K. Müllen, “Graphene-Based Carbon Nitride Nanosheets as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reactions,” Angewandte Chemie International Edition, Vol. 50, No. 23, 2011, pp. 5339-5343. doi:10.1002/anie.201100170
[5] S. Wang, D. Yu, L. Dai, D. W. Chang and J.-B. Baek, “Polyelectrolyte-Functionalized Graphene as Metal-Free Electrocatalysts for Oxygen Reduction,” ACS Nano, Vol. 5, No. 8, 2011, pp. 6202-6209. doi:10.1021/nn200879h
[6] K. P. Gong, F. Du, Z. H. Xia, M. Durstock and L. M. Dai, “Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction,” Science, Vol. 323, No. 5915, 2009, pp. 760-764.
[7] D. Sheng, S. Perathoner and G. Centi, “Nanocarbons for the Development of Advanced Catalysts,” Chemical Reviews, in Press, 2013.
[8] L. Qu, Y. Liu, J.-B. Baek and L. Dai, “Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells,” ACS Nano, Vol. 4, No. 3, 2010, pp. 1321-1326. doi:10.1021/nn901850u
[9] X. Li, H. Wang, J. T. Robinson, H. Sanchez, G. Diankov and H. Dai, “Simultaneous Nitrogen Doping and Reduction of Graphene Oxide,” Journal of the American Chemical Society, Vol. 131, No. 43, 2009, pp. 15939-15944. doi:10.1021/ja907098f
[10] D. R. Dreyer, H.-P. Jia and C. W. Bielawski, “Graphene Oxide: A Convenient Carbocatalyst for Facilitating Oxidation and Hydration Reactions,” Angewandte Chemie, Vol. 122, No. 38, 2010, pp. 6965-6968. doi:10.1002/ange.201002160
[11] D. R. Dreyer, H.-P. Jia and C. W. Bielawski, “C-H Oxidation Using Graphite Oxide” Tetrahedron, Vol. 67, No. 24, 2011, pp. 4431-4434.
[12] Z.-H. Sheng, L. Shao, J.-J. Chen, W.-J. Bao, F.-B. Wang and X.-H. Xia, “Catalyst-Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis,” ACS Nano, Vol. 5, No. 6, 2011, pp. 4350-4358. doi:10.1021/nn103584t
[13] Z.-H. Sheng, H.-L. Gao, W.-J. Bao, F.-B. Wang and X.-H. Xia, “Synthesis of Boron Doped Graphene for Oxygen Reduction Reaction in Fuel Cells,” Journal of Materials Chemistry, Vol. 22, No. 2, 2012, pp. 390-395. doi:10.1039/c1jm14694g
[14] H. Gao, J. Liu, L. Song, W. Guo, W. Gao, L. Ci, A. Rao, W. Quan, R. Vajtai and P. M. Ajayan, “Synthesis of S-Doped Graphene by Liquid Precursor,” Nanotechnology, Vol. 23, No. 27, 2012, p. 275605.
[15] D. W. Boukhvalov and Y.-W. Son, “Oxygen Reduction Reactions on Pure and Nitrogen-Doped Graphene: A First-Principles Modeling,” Nanoscale, Vol. 4, No. 2, 2012, pp. 417-420.
[16] D. W. Boukhvalov, D. R. Dreyer, C. W. Bielawski and Y.-W. Son, “A Computational Investigation of the Catalytic Properties of Graphene Oxide: Exploring Mechanisms by using DFT Methods,” ChemCatChem, Vol. 4, No. 11, 2012, pp. 1844-1849. doi:10.1002/cctc.201200210
[17] D. M. Kern, “The Hydration of Carbon Dioxide,” Journal of Chemical Education, Vol. 37, No. 1, 1960, p. 14. doi:10.1021/ed037p14
[18] V. L. Kuznetsov, A. F. Danilyuk, I. E. Kolosova and Y. I. Yermakov, “CO Hydration over Catalysts Prepared via Supporting Fe3(CO)12 and (NEt4)2[Fe2Mn(CO)12] on Oxide Supports,” Reaction Kinetics and Catalysis Letters, Vol. 21, No. 3, 1982, pp. 249. doi:10.1007/BF02070619
[19] T. Inoue, A. Fujishima, S. Konishi and K. Honda, “Pho- toelectrocatalytic Reduction of Carbon Dioxide in Aqueous Suspensions of Semiconductor Powers,” Nature, Vol. 277, No. 5698, 1979, pp. 637-638.
[20] S. C. Roy, O. K. Varghese, M. Paulose and C. A. Grimes, “Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons,” ACS Nano, Vol. 4, No. 3, 2010, pp. 1259-1278. doi:10.1021/nn9015423
[21] M. Kokoja, C. Bruckmeier, B. Rieger, W. A. Herrmann and F. E. Kühn, “Transformation of Carbon Dioxide with Homogeneous Transition-Metal Catalysts: A Molecular Solution to a Global Challenge?” Angewandte Chemie International Edition, Vol. 50, No. 37, 2011, pp. 8510- 8537. doi:10.1002/anie.201102010
[22] C. Federsel, R. Jackstell and M. Beller, “State-of-the-Art Catalysts for Hydrogenation of Carbon Dioxide,” Angewandte Chemie International Edition, Vol. 49, No. 36, 2010, pp. 6254-6257. doi:10.1002/anie.201000533
[23] W. Wang, S. Wang, X. Ma and J. Gong, “Recent Advances in Catalytic Hydrogenation of Carbon Dioxide,” Chemical Society Reviews, Vol. 40, No. 7, 2011, pp. 3703-3727. doi:10.1039/c1cs15008a
[24] Y. Borodko and G. A. Somorjai, “Catalytic Hydrogenation of Carbon Oxides—A 10-Year Perspective,” Applied Catalysis A: General, Vol. 186, No. 1-2, 1999, pp. 355- 362. doi:10.1016/S0926-860X(99)00154-4
[25] X.-M. Liu, G. Q. Lu, Z.-F. Yan and J. Beltramini, “Recent Advances in Catalysts for Methanol Synthesis via Hydrogenation of CO and CO2,” Industrial & Engineering Chemistry Research, Vol. 42, No. 25, 2003, pp. 6518- 6530. doi:10.1021/ie020979s
[26] M. S. G. Ahlquist, “Iridium Catalyzed Hydrogenation of CO2 under basic Conditions—Mechanistic Insight from Theory,” Journal of Molecular Catalysis A: Chemical, Vol. 324, No. 1-2, 2010, pp. 3-8. doi:10.1016/j.molcata.2010.02.018
[27] R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva and A. K. Geim, “Unimpeded Permeation of Water through Helium-Leak—Tight Graphene-Based Membranes” Science, Vol. 335, No. 6067, 2012, pp. 442-444.
[28] H.-C. Hsu, I. Shown, H.-Y. Wei, Y.-C. Chang, H.-Y. Du, Y.-G. Lin, C.-A. Tseng, C.-H. Wang, L.-C. Chen, Y.-C. Lin and K.-H. Chen, “Graphene Oxide as a Promising Photocatalyst for CO2 to Methanol Conversion,” Nano- scale, Vol. 5, No. 1, 2013, pp. 262-268.
[29] J. M. Soler, E. Artacho, J. D. Gale, A. Garsia, J. Junquera, P. Orejon and D. Sanchez-Portal, “The SIESTA Method for Ab Initio Order-N Materials Simulation,” Journal of Physics: Condensed Matter, Vol. 14, No. 11, 2002, p. 2745. doi:10.1088/0953-8984/14/11/302
[30] D. W. Boukhvalov and M. I. Katsnelson, “sp-Electron Magnetic Clusters with a Large Spin in Graphene,” ACS Nano, Vol. 5, No. 4, 2011, pp. 2440-2446. doi:10.1021/nn103510c
[31] D. W. Boukhvalov, “Modeling of hydrogen and Hydroxyl Group Migration on Grapheme,” Physical Chemistry Chemical Physics, Vol. 12, No. 47, 2010, pp. 15367- 15371. doi:10.1039/c0cp01009j
[32] J. P. Perdew, K. Burke and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters, Vol. 77, No. 18, 1996, pp. 3865-3868. doi:10.1103/PhysRevLett.77.3865
[33] M. N. Troullier and J. L. Martins, “Efficient Pseudopotentials for Plane-Wave Calculations,” Physical Review B, Vol. 43, No. 3, 1991, pp. 1993-2006. doi:10.1103/PhysRevB.43.1993
[34] H. J. Monkhorst and J. D Park, “Special Points for Bril- louin-Zone Integrations,” Physical Review B, Vol. 13, No. 12, 1976, pp. 5188-5192. doi:10.1103/PhysRevB.13.5188
[35] S. Kim, S. Zhou, Y. Hu, M. Acik, Y. J. Chabal, C. Berger, W. de Heer, A. Bongiorno and E. Riedo, “Room- Temperature Metastability of Multilayer Graphene Oxide Films,” Nature Materials, Vol. 11, No. 6, 2012, pp. 544- 549. doi:10.1038/nmat3316
[36] J. Zhu, C. M. Andres, J. Xu, A. Ramamoorthy, T. Tsotis and N. A. Kotov, “Pseudonegative Thermal Expansion and the State of Water in Graphene Oxide Layered Assemblies,” ACS Nano, Vol. 6, No. 9, 2012, pp. 8357- 8365. doi:10.1021/nn3031244
[37] D. R. Dreyer, S. Murali, Y. W. Zhu, R. S. Ruoff and C. W. Bielawski, “Reduction of Graphite Oxide Using Alcohols,” Journal of Materials Chemistry, Vol. 21, No. 10, 2011, pp. 3443-3447. doi:10.1039/c0jm02704a
[38] H. S. Bae, E. Seo, S. Jang, K. H. Park and B.-S. Kim, “Hybrid Gold Nanoparticle-Reduced Graphene Oxide Nanosheets as Active Catalysts for Highly Efficient Reduction of Nitroarenes,” Journal of Materials Chemistry, Vol. 21, No. 39, 2011, pp. 15431-15436. doi:10.1039/c1jm12477c
[39] K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber and S. Iwata, “Architecture of the Photosynthetic Oxygen-Evolving Center,” Science, Vol. 303, No. 5665, 2004, pp. 1831-1838.
[40] M. Haumann, P. Liebisch, C. Müller, M. Barra, M. Grabolle and H. Dai, “Photosynthetic O2 Formation Tracked by Time-Resolved X-Ray Experiments,” Science, Vol. 310, No. 5750, 2005, pp. 1019-1021.
[41] G. C. Dismukes, R. Brimblecombe, G. A. N. Felton, R. S. Pryadun, J. E. Sheats, L. Spiccia and G. F. Swiegers, “Development of Bioinspired Mn4O4-Cubane Water Oxidation Catalysts: Lessons from Photosynthesis,” Accounts of Chemical Research, Vol. 42, No. 12, 2009, pp. 1935- 1943. doi:10.1021/ar900249x
[42] V. Chandra, J. Park, Y. Chun, J. W. Lee, I.-C. Hwang and K. S. Kim, “Water-Dispersible Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal,” ACS Nano, Vol. 4, No. 7, 2010, pp. 3979-3686. doi:10.1021/nn1008897
[43] G. Williams, B. Seger and P. V. Kamat, “TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide,” ACS Nano, Vol. 2, No. 7, 2008, pp. 1487-1491. doi:10.1021/nn800251f
[44] D. Wang, R. Kou, D. Choi, Z. Yang, Z. Nie, J. Li, L. V. Saraf, D. Hu, J. Zhang, G. L. Graff, J. Lui, M. A. Pope and I. Aksay, “Ternary Self-Assembly of Ordered Metal Oxide-Graphene Nanocomposites for Electrochemical Energy Storage,” ACS Nano, Vol. 4, No. 3, 2010, pp. 1587-1595. doi:10.1021/nn901819n
[45] Q. Ramsee, R. Zan, U. Bangert, D. W. Boukhvalov, Y.-W. Son, K. S. Novoselov, “Direct Experimental Evidence of Metal-Mediated Etching of Suspended Graphene” ACS Nano, Vol. 6, No. 5, 2012, pp. 4063-4071. doi:10.1021/nn300452y

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.