Bone loss prevention in ovariectomized rats using stable amorphous calcium carbonate

DOI: 10.4236/health.2013.57A2003   PDF   HTML     3,891 Downloads   6,670 Views   Citations


In assessing the relationship between calcium supplementation and maintaining bone mass or reducing the risk of fracture, the effectiveness of calcium supplementation has never been decisive. Freshwater crayfish rely on amorphous calcium carbonate (ACC), an instable polymorph of calcium carbonate, as the main mineral in the exoskeleton and in the temporary storage organ, the gastrolith. Inspired by the crayfish model, we have previously shown an increase in calcium bioavailability in rats administered with synthetic stable ACC vs. crystalline calcium carbonate (CCC). The current study compared the effects of amorphous calcium derived from either gastrolith or synthetic ACC with those of crystalline calcium, found in commercial CCC or calciumcitrate supplements, in a bone loss prevention model. Rats were subjected to either sham or ovariectomy (OVX) operation (n~20/ group) followed by administration of food pellets supplemented with 0.5% calcium from either source over 12 weeks. Micro-computed tomography (μCT) and histomorphometric analyses revealed bone loss prevention by both gastrolith and ACC treatments, manifested by an increase in morphometric bone parameters, compared to both CCC- and calcium citrate-treated groups. Both gastrolith and ACC treatments resulted in bone formation in the tibia cancellous bone, indicated by dynamic histomorphometry parameters, compared to either the CCC or calcium citrate treatments. Levels of urine deoxypyridinoline (DPD), suggested an anti-resorptive effect of ACC, which was also the only treatment that led to a significant increase in vertebral mechanical strength, as supported by μCT analysis of topology and orientation parameters of the vertebral trabeculae. To our knowledge, such levels of bone loss prevention by calcium supplements have never been reported. These findings thus suggest the potential of both natural (crayfish gastrolith) and, to a greater extent, synthetic ACC sources for the prevention of metabolic bone disorders and possibly of osteoporotic processes.

Share and Cite:

Shaltiel, G. , Bar-David, E. , Meiron, O. , Waltman, E. , Shechter, A. , Aflalo, E. , Stepensky, D. , Berman, A. , Martin, B. , Weaver, C. and Sagi, A. (2013) Bone loss prevention in ovariectomized rats using stable amorphous calcium carbonate. Health, 5, 18-29. doi: 10.4236/health.2013.57A2003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Grossman, J.M. (2011) Osteoporosis prevention. Current Opinion in Rheumatology, 23, 203-210. doi:10.1097/BOR.0b013e3283439426
[2] Straub, D.A. (2007) Calcium supplementation in clinical practice: A review of forms, doses, and indications. Nutrition in Clinical Practice, 22, 286-296. doi:10.1177/0115426507022003286
[3] Weaver, C. and Heaney, R. (2006) Calcium in human health. Nutrition Health, Humana Press Inc., New Jersey, 450.
[4] Tang, B.M., Eslick, G.D., Nowson, C., Smith, C. and Bensoussan, A. (2007) Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: A meta-analysis. Lancet, 370, 657-666. doi:10.1016/S0140-6736(07)61342-7
[5] Boonen, S., Wahl, D.A., Nauroy, L., Brandi, M.L., Bouxsein, M.L., Goldhahn, J., Lewiecki, E.M., Lyritis, G.P., Marsh, D., Obrant, K., Silverman, S., Siris, E. and Akesson, K. (2011) Balloon kyphoplasty and vertebroplasty in the management of vertebral compression fractures. Osteoporosis International, 22, 2915-2934. doi:10.1007/s00198-011-1639-5
[6] Grant, A.M., Avenell, A., Campbell, M.K., McDonald, A.M., MacLennan, G.S., McPherson, G.C., Anderson, F.H., Cooper, C., Francis, R.M., Donaldson, C., Gillespie, W.J., Robinson, C.M., Torgerson, D.J. and Wallace, W.A. (2005) Oral vitamin D3 and calcium for secondary prevention of low-trauma fractures in elderly people (Randomised evaluation of calcium or vitamin D, RECORD): A randomised placebo-controlled trial. Lancet, 365, 1621-1628. doi:10.1016/S0140-6736(05)63013-9
[7] Shea, B., Wells, G., Cranney, A., Zytaruk, N., Robinson, V., Griffith, L., Ortiz, Z., Peterson, J., Adachi, J., Tugwell, P. and Guyatt, G. (2002) Meta-analyses of therapies for postmenopausal osteoporosis. VII. Meta-analysis of calcium supplementation for the prevention of postmenopausal osteoporosis. Endocrine Reviews, 23, 552-559. doi:10.1210/er.2001-7002
[8] Dawson-Hughes, B., Dallal, G.E., Krall, E.A., Sadowski, L., Sahyoun, N. and Tannenbaum, S. (1990) A controlled trial of the effect of calcium supplementation on bone density in postmenopausal women. The New England Journal of Medicine, 323, 878-883. doi:10.1056/NEJM199009273231305
[9] Dawson-Hughes, B. (1991) Calcium supplementation and bone loss: A review of controlled clinical trials. The American Journal of Clinical Nutrition, 54, 274S-280S.
[10] Dawson-Hughes, B., Harris, S.S., Krall, E.A. and Dallal, G.E. (1997) Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. The New England Journal of Medicine, 337, 670-676. doi:10.1056/NEJM199709043371003
[11] Bischoff-Ferrari, H.A., Dawson-Hughes, B., Baron, J.A., Burckhardt, P., Li, R., Spiegelman, D., Specker, B., Orav, J.E., Wong, J.B., Staehelin, H.B., O’Reilly, E., Kiel, D.P. and Willett, W.C. (2007) Calcium intake and hip fracture risk in men and women: A meta-analysis of prospective cohort studies and randomized controlled trials. The American Journal of Clinical Nutrition, 86, 1780-1790.
[12] Jackson, R.D., LaCroix, A.Z., Gass, M., Wallace, R.B., Robbins, J., Lewis, C.E., Bassford, T., Beresford, S.A., Black, H.R., Blanchette, P., Bonds, D.E., Brunner, R.L., Brzyski, R.G., Caan, B., Cauley, J.A., Chlebowski, R.T., Cummings, S.R., Granek, I., Hays, J., Heiss, G., Hendrix, S.L., Howard, B.V., Hsia, J., Hubbell, F.A., Johnson, K.C., Judd, H., Kotchen, J.M., Kuller, L.H., Langer, R.D., Lasser, N.L., Limacher, M.C., Ludlam, S., Manson, J.E., Margolis, K.L., McGowan, J., Ockene, J.K., O’Sullivan, M.J., Phillips, L., Prentice, R.L., Sarto, G.E., Stefanick, M.L., Van Horn, L., Wactawski-Wende, J., Whitlock, E., Anderson, G.L., Assaf, A.R. and Barad, D. (2006) Calcium plus vitamin D supplementation and the risk of fractures. The New England Journal of Medicine, 354, 669-683. doi:10.1056/NEJMoa055218
[13] Porthouse, J., Cockayne, S., King, C., Saxon, L., Steele, E., Aspray, T., Baverstock, M., Birks, Y., Dumville, J., Francis, R., Iglesias, C., Puffer, S., Sutcliffe, A., Watt, I. and Torgerson, D.J. (2005) Randomised controlled trial of calcium and supplementation with cholecalciferol (vitamin D3) for prevention of fractures in primary care. British Medical Journal, 330, 1003. doi:10.1136/bmj.330.7498.1003
[14] Nebel, H., Neumann, M., Mayer, C. and Epple, M. (2008) On the structure of amorphous calcium carbonate—A detailed study by solid-state NMR spectroscopy. Inorganic Chemistry, 47, 7874-7879. doi:10.1021/ic8007409
[15] Donners, J.J.J.M., Heywood, B.R. and Sommerdijk, N.A. J.M. (2000) Amorphous calcium carbonate stabilised by poly(propylene imine) dendrimers. Chemical Communications, 1937-1938. doi:10.1039/b004867o
[16] Huang, S.C., Naka, K. and Chujo, Y. (2007) A carbonate controlled-addition method for amorphous calcium carbonate spheres stabilized by poly(acrylic acid)s. Langmuir, 23, 12086-12095. doi:10.1021/la701972n
[17] Guillemet, B., Faatz, M., Grohn, F., Wegner, G. and Gnanou, Y. (2006) Nanosized amorphous calcium carbonate stabilized by poly(ethylene oxide)-b-poly(acrylic acid) block copolymers. Langmuir, 22, 1875-1879. doi:10.1021/la052419e
[18] Shechter, A., Berman, A., Singer, A., Freiman, A., Grinstein, M., Erez, J., Aflalo, E.D. and Sagi, A. (2008) Reciprocal changes in calcification of the gastrolith and cuticle during the molt cycle of the red claw crayfish Cherax quadricarinatus. Biological Bulletin, 214, 122134. doi:10.2307/25066669
[19] Bentov, S., Weil, S., Glazer, L., Sagi, A. and Berman, A. (2010) Stabilization of amorphous calcium carbonate by phosphate rich organic matrix proteins and by single phosphoamino acids. Journal of Structural Biology, 171, 207-215. doi:10.1016/j.jsb.2010.04.007
[20] Meiron, O.E., Bar-David, E., Aflalo, E.D., Shechter, A., Stepensky, D., Berman, A. and Sagi, A. (2011) Solubility and bioavailability of stabilized amorphous calcium carbonate. Journal of Bone and Mineral Research, 26, 364-372. doi:10.1002/jbmr.196
[21] Glazer, L. and Sagi, A. (2012) On the involvement of proteins in the assembly of the crayfish gastrolith extracellular matrix. Invertebrate Reproduction & Development, 56, 57-65. doi:10.1080/07924259.2011.588010
[22] Welch, J.M., Turner, C.H., Devareddy, L., Arjmandi, B.H. and Weaver, C.M. (2008) High impact exercise is more beneficial than dietary calcium for building bone strength in the growing rat skeleton. Bone, 42, 660-668. doi:10.1016/j.bone.2007.12.220
[23] Lasota, A. and Danowska-Klonowska, D. (2004) Experimental osteoporosis—Different methods of ovariectomy in female white rats. Roczniki Akademii Medycznej Bialymstoku, 49, 129-131.
[24] Ogawa, K., Hori, M., Takao, R. and Sakurada, T. (2005) Effects of combined elcatonin and alendronate treatment on the architecture and strength of bone in ovariectomized rats. Journal of Bone and Mineral Metabolism, 23, 351-358. doi:10.1007/s00774-005-0612-9
[25] Shahnazari, M., Yao, W., Wang, B., Panganiban, B., Ritchie, R.O., Hagar, Y. and Lane, N.E. (2011) Differential maintenance of cortical and cancellous bone strength following discontinuation of bone-active agents. Journal of Bone and Mineral Research, 26, 569-581. doi:10.1002/jbmr.249
[26] Trivedi, R., Kumar, A., Gupta, V., Kumar, S., Nagar, G.K., Romero, J.R., Dwivedi, A.K. and Chattopadhyay, N. (2009) Effects of Egb 761 on bone mineral density, bone microstructure, and osteoblast function: Possible roles of quercetin and kaempferol. Molecular and Cellular Endocrinology, 302, 86-91. doi:10.1016/j.mce.2009.01.011
[27] Turner, C.H. and Burr, D.B. (1993) Basic biomechanical measurements of bone: A tutorial. Bone, 14, 595-608. doi:10.1016/8756-3282(93)90081-K
[28] Hahn, M., Vogel, M., Pompesius-Kempa, M. and Delling, G. (1992) Trabecular bone pattern factor—A new parameter for simple quantification of bone microarchitecture. Bone, 13, 327-330. doi:10.1016/8756-3282(92)90078-B
[29] Ikeda, S., Tsurukami, H., Ito, M., Sakai, A., Sakata, T., Nishida, S., Takeda, S., Shiraishi, A. and Nakamura, T. (2001) Effect of trabecular bone contour on ultimate strength of lumbar vertebra after bilateral ovariectomy in rats. Bone, 28, 625-633. doi:10.1016/S8756-3282(01)00462-8
[30] Odgaard, A. (1997) Three-dimensional methods for quantification of cancellous bone architecture. Bone, 20, 315-328. doi:10.1016/S8756-3282(97)00007-0
[31] Lelovas, P.P., Xanthos, T.T., Thoma, S.E., Lyritis, G.P. and Dontas, I.A. (2008) The laboratory rat as an animal model for osteoporosis research. Comparative Medicine, 58, 424-430.
[32] Komm, B.S., Vlasseros, F., Samadfam, R., Chouinard, L. and Smith, S.Y. (2011) Skeletal effects of bazedoxifene paired with conjugated estrogens in ovariectomized rats. Bone, 49, 376-386. doi:10.1016/j.bone.2011.05.024
[33] Huxley, T.H. (1880) The crayfish. D. Appleton and Company, Cambridge.
[34] Jung, W.K., Moon, S.H. and Kim, S.K. (2006) Effect of chitooligosaccharides on calcium bioavailability and bone strength in ovariectomized rats. Life Sciences, 78, 970-976. doi:10.1016/j.lfs.2005.06.006
[35] Park, H.S., Ahn, J. and Kwak, H.S. (2008) Effect of nanocalcium-enriched milk on calcium metabolism in ovariectomized rats. Journal of Medicinal Food, 11, 454-459. doi:10.1089/jmf.2007.0086
[36] Shahnazari, M., Martin, B.R., Legette, L.L., Lachcik, P.J., Welch, J. and Weaver, C.M. (2009) Diet calcium level but not calcium supplement particle size affects bone density and mechanical properties in ovariectomized rats. The Journal of Nutrition, 139, 1308-1314. doi:10.3945/jn.108.101071
[37] Koshihara, M., Masuyama, R., Uehara, M. and Suzuki, K. (2004) Effect of dietary calcium: Phosphorus ratio on bone mineralization and intestinal calcium absorption in ovariectomized rats. Biofactors, 22, 39-42. doi:10.1002/biof.5520220107
[38] Shiraishi, A., Ito, M., Hayakawa, N., Kubota, N., Kubodera, N. and Ogata, E. (2006) Calcium supplementation does not reproduce the pharmacological efficacy of alfacalcidol for the treatment of osteoporosis in rats. Calcified Tissue International, 78, 152-161. doi:10.1007/s00223-005-0014-y
[39] Erben, R.G., Bromm, S. and Stangassinger, M. (1998) Therapeutic efficacy of 1alpha,25-dihydroxyvitamin D3 and calcium in osteopenic ovariectomized rats: evidence for a direct anabolic effect of 1alpha,25-dihydroxyvitamin D3 on bone. Endocrinology, 139, 4319-4328. doi:10.1210/en.139.10.4319
[40] Dai, R., Ma, Y., Sheng, Z., Jin, Y., Zhang, Y., Fang, L., Fan, H. and Liao, E. (2008) Effects of genistein on vertebral trabecular bone microstructure, bone mineral density, microcracks, osteocyte density, and bone strength in ovariectomized rats. Journal of Bone and Mineral Metabolism, 26, 342-349. doi:10.1007/s00774-007-0830-4
[41] Shoji, K., Elsubeihi, E.S. and Heersche, J.N. (2011) Effects of ovariectomy on turnover of alveolar bone in the healed extraction socket in rat edentulous mandible. Archives of Oral Biology, 56, 114-120. doi:10.1016/j.archoralbio.2010.09.013
[42] Parfitt, A.M., Drezner, M.K., Glorieux, F.H., Kanis, J.A., Malluche, H., Meunier, P.J., Ott, S.M. and Recker, R.R. (1987) Bone histomorphometry: Standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. Journal of Bone and Mineral Research, 2, 595-610. doi:10.1002/jbmr.5650020617
[43] Sato, A., Nagasaka, S., Furihata, K., Nagata, S., Arai, I., Saruwatari, K., Kogure, T., Sakuda, S. and Nagasawa, H. (2011) Glycolytic intermediates induce amorphous calcium carbonate formation in crustaceans. Nature Chemical Biology, 7, 197-199. doi:10.1038/nchembio.532
[44] Park, J.W., Kim, Y.J., Jang, J.H. and An, C.H. (2011) MC3T3-E1 cell differentiation and in vivo bone formation induced by phosphoserine. Biotechnology Letters, 33, 1473-1480. doi:10.1007/s10529-011-0565-0
[45] Goldstein, S.A., Goulet, R. and McCubbrey, D. (1993) Measurement and significance of three-dimensional architecture to the mechanical integrity of trabecular bone. Calcified Tissue International, 53, S127-S132.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.