Share This Article:

Energy β-Conformal Change and Special Finsler Spaces

Abstract Full-Text HTML Download Download as PDF (Size:382KB) PP. 983-990
DOI: 10.4236/jmp.2013.47132    2,849 Downloads   4,114 Views  

ABSTRACT

The main aim of the present paper is to establish an intrinsic investigation of the energy β-conformal change of the most important special Finsler spaces, namely, Ch-recurrent, Cv-recurrent, C0-recurrent, Sv-recurrent, quasi-C-reducible, semi-C-reducible, C-reducible, P-reducible, C2-like, S3-like, P2-like and h-isotropic, ···, etc. Necessary and sufficient conditions for such special Finsler manifolds to be invariant under an energy β-conformal change are obtained. It should be pointed out that the present work is formulated in a prospective modern coordinate-free form.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Soleiman and A. Ishan, "Energy β-Conformal Change and Special Finsler Spaces," Journal of Modern Physics, Vol. 4 No. 7, 2013, pp. 983-990. doi: 10.4236/jmp.2013.47132.

References

[1] T. Mestdag and V. Toth, Report Mathmatics Physics, Vol. 50, 2002, pp. 167-193. doi:10.1016/S0034-4877(02)80053-2
[2] A. Soleiman, International Journal of Geometric Methods in Modern Physic, Vol. 9, 2012, 21 p.
[3] H. Akbar-Zadeh, “Initiation to Global Finsler Geometry,” Elsevier, San Diego, 2006.
[4] P. Dazord, “Propriétés Globales des Géodésiques des Espaces de Finsler,” Thése d’Etat, Publication Department Mathematics Lyon, 1969.
[5] A. A. Tamim, “General Theory of Finsler Spaces with Applications to Randers Spaces,” Ph.D. Thesis, Cairo University, Cairo, 1991.
[6] N. L. Youssef, S. H. Abed and A. Soleiman, Balkan Journal of Geometry and Its Applications, Vol. 15, 2010, pp. 138-150.
[7] N. L. Youssef, S. H. Abed and A. Soleiman, Tensor N. S., Vol. 71, 2009, pp. 187-208.
[8] N. L. Youssef, S. H. Abed and A. Soleiman, Algebras, Groups and Geometries, Vol. 25, 2008, pp. 363-386.
[9] F. Brickell, Proceedings of the American Mathematical Society, Vol. 16, 1965, pp. 90-191.
[10] J. Grifone, Annales de L’Institut Fourier, Grenoble, Vol. 22, 1972, pp. 287-334. doi:10.5802/aif.407
[11] J. Grifone, Annales de L’Institut Fourier, Grenoble, Vol. 22, 1972, pp. 291-338. doi:10.5802/aif.431
[12] J. Klein and A. Voutier, Annales de L’Institut Fourier, Grenoble, Vol. 18, 1968, pp. 241-260. doi:10.5802/aif.282
[13] N. L. Youssef, Tensor, N. S., Vol. 36, 1982, pp. 275-280.
[14] N. L. Youssef, S. H. Abed and A. Soleiman, Kyoto Journal of Mathematics, Vol. 48, 2008, pp. 857-893.
[15] N. L. Youssef, S. H. Abed and A. Soleiman, International Journal of Geometric Methods in Modern Physics, Vol. 6, 2009, pp. 1003-1031.
[16] N. L. Youssef, S. H. Abed and A. Soleiman, Journal of the Egyptian Mathematical Society, Vol. 18, 2010, pp. 67-90.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.