Share This Article:

Reliable Train Network with Active Supervisor

Full-Text HTML Download Download as PDF (Size:616KB) PP. 214-219
DOI: 10.4236/jtts.2013.33022    3,743 Downloads   5,429 Views   Citations


In this paper, a new reliable hierarchical model is suggested for a two-wagon train Networked Control System. Each wagon has a Controller that carries the control load and an Entertainment server that handles the entertainment. A supervisory controller runs on top of the two controllers and the two entertainment servers. Contrary to a similar model in the literature, the Supervisory node replaces a Controller as soon as it fails (Active Supervisor). All system states are analyzed and simulated using OPNET. It is shown that, for all states, this architecture has zero control packets dropped and the end-to-end delay is below the maximum target delay. A comparison between this Active model and the other model in the literature is presented. It is found that the entertainment in this new architecture is kept available for the passengers in more of the system states when compared to the architecture previously presented in the literature.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Hassan, R. Daoud and H. Amer, "Reliable Train Network with Active Supervisor," Journal of Transportation Technologies, Vol. 3 No. 3, 2013, pp. 214-219. doi: 10.4236/jtts.2013.33022.


[1] N. Navet, Y. Song, F. Simonot-Lion and C. Wilwert, “Trends in Automotive Communication Systems,” Proceedings of the IEEE, Vol. 93, No. 6, 2005, pp. 1204-1223. doi:10.1109/JPROC.2005.849725
[2] R. M. Daoud, H. M. Elsayed and H. H. Amer, “Gigabit Ethernet for Redundant Networked Control Systems,” Proceedings of the IEEE International Conference on Industrial Technology ICIT, Hammamet, 8-10 December 2004, pp. 869-873.
[3] J. D. Decotignie, “Ethernet-Based Real-Time and Industrial Communications,” Proceedings of the IEEE, Vol. 93, No. 6, 2005, pp. 1102-1117. doi:10.1109/JPROC.2005.849721
[4] R. M. Daoud, H. H. Amer, H. M. Elsayed and Y. Sallez, “Fault-Tolerant On-Board Ethernet-Based Vehicle Networks,” Proceedings of the 32nd Annual Conference of the IEEE Industrial Electronics Society IECON, Paris, 6-10 November 2006, pp. 4662-4665.
[5] “CAN in Passenger and Cargo Trains,” CAN in Automation, 2011.
[6] Official Site for PROFIBUS and PROFINET.
[7] IEEE 802.3 Standard.
[8] T. Skeie, S. Johannessen and C. Brunner, “Ethernet in Substation Automation,” IEEE Control Systems, Vol. 22, No. 3, 2002, pp. 43-51. doi:10.1109/MCS.2002.1003998
[9] F. L. Lian, J. R. Moyne and D. M. Tilbury, “Performance Evaluation of Control Networks: Ethernet, ControlNet, and DeviceNet,” IEEE Control Systems Magazine, Vol. 21, No. 1, 2001, pp. 66-83. doi:10.1109/37.898793
[10] S. H. Lee and K. H. Cho, “Congestion Control of HighSpeed Gigabit-Ethernet Networks for Industrial Applications,” Proceedings of the IEEE International Symposium on Industrial Electronics ISIE, Pusan, 12-16 June 2001, pp. 260-265.
[11] J. S. Meditch and C. T. A. Lea, “Stability and Optimization of the CSMA and CSMA/CD Channels,” IEEE Transactions on Communications, Vol. 31, No. 6, 1983, pp. 763-774. doi:10.1109/TCOM.1983.1095881
[12] ODVA, “EtherNet/IP Adaptation on CIP,” CIP Common, 2007.
[13] Allen-Bradley, “EtherNet/IP Performance and Application Guide,” Rockwell Automation Application Solution, 2003.
[14] J. Ferreira, P. Pedreiras, L. Almeida and J. Fonseca, “Achieving Fault-Tolerance in FTT-CAN,” Proceedings of the 4th IEEE International Workshop on Factory Communication Systems WFCS, Vasteras, August 2002, pp. 125-132. doi:10.1109/WFCS.2002.1159709
[15] P. Pedreiras, L. Almeida and P. Gai, “The FTTEthernetProtocol: Merging Flexibility, Timeliness and Efficiency,” Proceedings of the IEEE Euromicro Conference on Real-Time Systems ECRTS, Vienna, 19-21 June 2002, pp. 134-142.
[16] K. Steinhammer and A. Ademaj, “Hardware Implementation of the Time-Triggered Ethernet Controller,” Embedded System Design: Topics, Techniques and Trends, Vol. 231, Springer, Boston, 2007, pp. 325-338. doi:10.1007/978-0-387-72258-0_28
[17] G. Krambles, J. J. Fox and W. J. Bierwagen, “Automatic Train Control in Rapid Transit,” 1976.
[18] M. Aziz, B. Raouf, N. Riad, R. M. Daoud and H. M. ElSayed, “The Use of Ethernet for Single On-Board Train Network,” Proceedings of the IEEE International Conference on Networking, Sensing and Control ICNSC, Hainan, 6-8 April 2008, pp. 1430-1434.
[19] M. Hassan, S. Gamal, S. Louis, G. F. Zaki and H. H. Amer, “Fault Tolerant Ethernet Network Model for Control and Entertainment in Railway Transportation Systems,” Proceedings of the Canadian Conference on Electrical and Computer Engineering CCECE, Niagara Falls, 4-7 May 2008, pp. 771-774.
[20] T. K. Refaat, H. H. Amer and R. M. Daoud, “Reliable Architecture for a Two-Wagon Switched Ethernet Train Control Network,” Proceedings of the 3rd IEEE International Congress on Ultra Modern Telecommunications and Control Systems ICUMT, Budapest, 5-7 October 2011, pp. 1-7.
[21] T. K. Refaat, H. H. Amer, R. M. Daoud and M. S. Moustafa, “On the Performability of On-Board Train Networks with Fault-Tolerant Controllers,” Proceedings of the IEEE International Conference on Mechatronics ICM, Istanbul, 13-15 April 2011, pp. 743-748.
[22] Official Site for OPNET.
[23] “Train Communication Network, IEC 61375,” International Electrotechnical Committee, Geneva, 1999.
[24] M. Hassan, R. M. Daoud and H. H. Amer, “Passive Supervisor for Railway Fault-Tolerant Ethernet Networked Control Systems,” Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automation ETFA, Toulouse, 5-9 September 2011, pp. 1-4.
[25] T. K. Refaat, M. Hassan, R. M. Daoud and H. H. Amer, “Ethernet Implementation of Fault Tolerant Train Network for Entertainment and Mixed Control Traffic,” Journal of Transportation Technologies, Vol. 3, No. 1, 2013, pp. 105-111. doi:10.4236/jtts.2013.31010
[26] H. Glickenstein, “New Developments in Land Transportation,” IEEE Vehicular Technology Magazine, Vol. 5, No. 2, 2010, pp. 17-20. doi:10.1109/MVT.2010.936653
[27] “Trains Reference List,” Siemens AG Transportation Systems Trains, pp. 41-46.
[28] Official Site for Cisco Catalyst 3560 Series Switch.
[29] Video Charg, “Description of the Supported Formats,” 2010.
[30] J. D. Swanson and C. Thornes, “Light Rail Transit Systems,” IEEE Vehicular Technology Magazine, Vol. 5, No. 2, 2010, pp. 22-27. doi:10.1109/MVT.2010.936645
[31] R. M. Daoud, “Wireless and Wired Ethernet for Intelligent Transportation Systems,” D.Sc. Dissertation, Universite de Valenciennes et du Hainaut-Cambresis, Valenciennes, 2008.
[32] L. Seno, S. Vitturi and F. Tramarin, “Experimental Evaluation of the Service Time for Industrial Hybrid (Wired/ Wireless) Networks under Non-Ideal Environmental Conditions,” Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automation ETFA, Toulouse, 5-9 September 2011, pp. 1-8.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.