Turbulent Flowfield Analysis in a Bluff-Body Burner Using PIV


The structure of inert turbulent flows, stabilized in a Bluff-Body burner, is studied considering different volumetric flows for Nitrogen jet and annular air in coflow configuration. Flowfield analysis on Bluff-Body burner is essential to improve the knowledge about this burner, which plays an important role in industrial applications. Thus, vector velocity field is performed, employing Particle Image Velocimetry technique. Also, an uncertainty analysis is performed considering parameters involved in this technique yielding 6% to velocity measurements. The acquired information produces the results based in flowfield structure, which are presented in terms of statistical momentum and Reynolds stress, in which Boussinesq Hypothesis is considered to incompressible flows. However, this hypothesis fails in certain conditions. In this way, is possible to comprehend and provide experimental data from the turbulent effects on the flowfield and also contribute to predict the combustion flows, in order to enable the validation and develop numerical models.

Share and Cite:

N. Caetano and F. Laan, "Turbulent Flowfield Analysis in a Bluff-Body Burner Using PIV," World Journal of Mechanics, Vol. 3 No. 4, 2013, pp. 215-223. doi: 10.4236/wjm.2013.34021.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. Raffel, C. E. Willert, S. T. Wereley and J. Kompen hans, “Particle Image Velocimetry, a Praticle Guide,” Gottingen, Springer, 2007, p. 448.
[2] J. Westerweel, “Fundamentals of Digital Particle Image Velocimetry,” Measurement Science and Technology, Vol. 8, No. 12, 1997, pp. 1379-1392. doi:10.1088/0957-0233/8/12/002
[3] N. R. Caetano, “Estudo Experimental de Chamas Tur bulentas nao Pré-Misturadas Empregando Simultanea mente as Técnicas de Diagnóstico Laser PLIF e PIV,” Ph.D. Thesis, Mechanical Engineering Department, PUC Rio, Rio de Janeiro, 2012, p. 180.
[4] B. Bohm, C. Heeger, I. Boxx, W. Meier and A. Dreizler, “Time-Resolved Conditional Flow Field Statistics in Ex tinguishing Turbulent Opposed Jet Flames Using Simultaneous High Speed PIV/OH-PLIF,” Proceedings of the Combustion Institute, Vol. 32, No. 2, 2009, pp. 1647-1654. doi:10.1016/j.proci.2008.06.136
[5] P. S. Kothnur, M. S. Tsurikov, N. T. Clemens, J. M. Don bar and C. D. Carter, “Planar Imaging of CH, OH, and Velocity in Turbulent Non-Premixed Jet Flames,” Proceedings of the Combustion Institute, Vol. 29, No. 2, 2002, pp. 1921-1927. doi:10.1016/S1540-7489(02)80233-4
[6] A. M. Steinberg, J. F. Driscoll and S. L. Ceccio, “Tem poral Evolution of Flame Stretch Due to Turbulence and the Hydrodynamic Instability,” Proceedings of the Combustion Institute, Vol. 32, No. 2, 2009, pp. 1713-1721. doi:10.1016/j.proci.2008.05.003
[7] M. Shimura, T. Ueda, G. Choi, M. Tanahashi and T. Mi yauchi, “Simultaneous Dual-Plane CH PLIF, Single Plane OH PLIF and Dual-Plane Stereoscopic PIV Measurements in Methane-Air Turbulent Premixed Flames,” Proceedings of the Combustion Institute, Vol. 33, No. 1, 2011, pp. 775-782. doi:10.1016/j.proci.2010.05.026
[8] G. Troiani, M. Marrocco, S. Giammartini and C. M. Casciola, “Counter-Gradient Transport in the Combustion of a Premixed CH4/Air Annular Jet by Combined PIV/ OH-LIF,” Combustion and Flame, Vol. 156, No. 3, 2009, pp. 608-620. doi:10.1016/j.combustflame.2008.12.010
[9] L. E. A. Huapaya, “Caracterizacao Numérica e Experi mental de Uma Chama Turbulenta nao Pré-Misturada,” Ph.D. Thesis, Mechanical Engineering Department, PUC Rio, Rio de Janeiro, 2008, p. 169.
[10] P. T. Lacava and C. A. Martins, “Métodos Experimentais de Análise Aplicados à Combustao,” Papel Brasil, 2010.
[11] A. P. S. Freire, A. Ilha and R. Breidenthal, “Turbulência,” 5th Turbulence and Transition School, IME, Rio de Janeiro, 2006.
[12] P. Petersson, J. Olofsson, C. Brackman, H. Seyfried, J. Zetterberg, M. Richter, M. Aldén, M. A. Linne, R. K. Cheng, A. Nauert, D. Geyer and A. Dreizler, “Simultaneous PIV/OH-PLIF, Rayleigh Thermometry/OH-PLIF and Stereo PIV Measurements in a Low-Swirl Flame,” Applied Optics, Vol. 46, No. 9, 2007, pp. 3928-3936. doi:10.1364/AO.46.003928
[13] E. T. Whittaker, “Expansions of the Interpolation-Theory,” Proceedings of the Royal Society, Vol. 35, 1915, p. 181.
[14] T. Roesgen, “Optimal Subpixel Interpolation in Particle Image Velocimetry,” Experiments in Fluids, Vol. 35, No. 3, 2003, pp. 252-256. doi:10.1007/s00348-003-0627-8
[15] S. J. Kline and F. A. McClintock, “Describing Uncertain ties in Single-Sample Experiments,” Mechanical Engineering, 1953.
[16] R. J. Moffat, “Contributions to the Theory of Single-Sample Uncertainty Analysis,” Journal of Fluids Engineering, Vol. 104, No. 2, 1982, pp. 250-258. doi:10.1115/1.3241818
[17] S. B. Pope, “Turbulent Flows,” Cambridge, 2000, p. 749. doi:10.1017/CBO9780511840531

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.