Estimation of Diffuse Solar Radiation in Area between 5°N and 10°N of Cameroon

Abstract

The successful design and effective utilization of solar energy systems and devices for application in various facets of human endeavors, such as power and water supply for industrial, agricultural and domestic uses, largely depend on the availability of information on solar radiation characteristic of the location in which the system and devices should be situated. This study proposed a multivariate model of monthly mean daily diffuse solar radiation on horizontal surfaces for some cities between 5°N and 10°N of Cameroon (Ngaoundéré, Garoua-Boulai, Bafoussam, Nkambé). The estimation was based on a correlation between clearance index and diffusion to global solar radiation ratio and was computed using monthly mean daily data set for global solar radiation on horizontal surfaces. The predictive efficiency of the proposed model was compared with the observed values and those believed to be universally applicable. The results suggested that the existing methods could be replaced by the developed model for a diffuse solar radiation data generation scheme.

Share and Cite:

T. Lealea and R. Tchinda, "Estimation of Diffuse Solar Radiation in Area between 5°N and 10°N of Cameroon," Natural Resources, Vol. 4 No. 3, 2013, pp. 279-285. doi: 10.4236/nr.2013.43035.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] [1] B. Y. H. Liu and R. C. Jordan, “Daily Insolation on Surfaces Tilted towards Equator,” ASHRAE Transactions, Vol. 3, 1961, pp. 526-541.
[2] J. K. Page, “The Estimation of Monthly ea Values of Daily Total Short Wave Radiation on Vertical and Inclined Surfaces from Sunshine Records for Latitudes 40°N -40°S,” Proceedings of the UN Conference on New Sources of Energy, Paper No. 598, 1964, pp. 378-390.
[3] M. Iqbal, “A Study of Canadian Diffuse and Total Solar Radiation Data, Part I. Monthly Average Daily Horizontal Radiation,” Solar Energy, Vol. 23, No. 2, 1979, pp. 169-173. doi:10.1016/0038-092X(79)90118-X
[4] J. C. Lam and D. H. W. Li, “Correlation between Global Solar Radiation and Its Direct and Diffuse Components,” Building and Environment, Vol. 31, No. 6, 1996, pp 527-535. doi:10.1016/0360-1323(96)00026-1
[5] M. Collares-Pereira and A. Rabl, “The Average Distribution of Solar Radiation Correlations between Diffuse and Hemispherical and between Daily and Hourly Insolation Values,” Solar Energy, Vol. 22, No. 2, 1979, pp. 155-164. doi:10.1016/0038-092X(79)90100-2
[6] D. G. Erbs, S. A. Klein and J. A. Duffie, “Estimation of the Diffuse Radiation Fraction for Hourly, Daily and Monthly Average Global Radiation,” Solar Energy, Vol. 28, No. 4, 1982, pp. 293-302. doi:10.1016/0038-092X(82)90302-4
[7] T. Muneer, M. M. Hawas and K. Sahili, “Correlation between Hourly Diffuse and Global Radiation for New Delhi,” Energy Conversion and Management, Vol. 24, No. 4, 1984, pp. 265-267. doi:10.1016/0196-8904(84)90004-9
[8] K. Ulgen and A. Hepbasli, “Prediction of Solar Radiation Parameters through Clearness Index for Izmir, Turkey,” Energy Sources, Vol. 24, No. 8, 2002, pp. 773-785. doi:10.1080/00908310290086680
[9] K. Ulgen and A. Hepbasli, “Estimation of Solar Radiation Parameters for Izmir, Turkey,” International Journal of Energy Research, Vol. 26, No. 9, 2002, pp. 807-823. doi:10.1002/er.821
[10] M. A. Ahmed, F. Ahmad and M. W. Akhtar, “Estimation of Global and Diffuse Solar Radiation for Hyderabad, Sindh, Pakistan,” Journal of Basic and Applied Sciences, Vol. 5, No. 2, 2009, pp. 73-77.
[11] M. S. Okundamiya and A. N. Nzeako, “Empirical Model for Estimating Global Solar Radiation on Horizontal Surfaces for Selected Cities in the Six Geopolitical Zones in Nigeria,” Research Journal of Applied Science, Engineering and Technology, Vol. 2, No. 8, 2010, pp. 805-812.
[12] L. A. Nguimdo and D. Njomo, “spatial and Temporal Distributions of Downlling Solar Radiation in Cameroon as Derived Using a Parametrzed Solar Radiatve Transfer Model in Molecular Atmosphere,” Journal of Heat and Mass Transfer, Vol. 3, No. 2, 2009, pp. 73-93.
[13] Z. Sen, “Solar Energy Fundamentals and Modeling Techniques,” Springer, Berlin, 2008, p. 151. doi:10.1007/978-1-84800-134-3
[14] G. E. P. Box and G. M. Jenkins, “Time Series Analysis Forecasting and Control,” Holden Day, San Francisco, 1970.
[15] J. R. Benjamin and C. A. Cornell, “Probability Statistics and Decision for Civil Engineers,” McGraw-Hill, New York, 1970, p. 684.
[16] R. J. Stone, “Improved Statistical Procedure for the Evaluation of Solar Radiation Estimation Models,” Solar Energy, Vol. 51, No. 4, 1993, pp. 289-291. doi:10.1016/0038-092X(93)90124-7
[17] J. Almorox, M. Benito and C. Hontoria, “Estimation of Monthly Angstrom-Prescott Equation Coefficients from Measured Daily Data in Toledo, Spain,” Renewable Energy, Vol. 30, No. 6, 2005, pp. 931-936. doi:10.1016/j.renene.2004.08.002
[18] E. O. Falayi, A. B. Rabiu and R. O. Teliat, “Correlations to Estimate Monthly Mean of Daily Diffuse Solar Radiation in Some Selected Cities in Nigeria,” Advances in Applied Science Research, Vol. 2, No. 4, 2011, pp. 480-490.
[19] A. M. Al-Salihi, M. M. Kadum and A. J. Mohammed, “Estimation of Global Solar Radiation on Horizontal Surface Using Meteorological Measurement for Different Cities in Iraq,” Asian Journal of Scientific Research, Vol. 3, No. 4, 2010, pp. 240-248. doi:10.3923/ajsr.2010.240.248
[20] “HolioClim-1 Data Base Satellite Data”. www.HelioClim.net
[21] M. Geiger, L. Diabate, L. Menard and L. Wald, “A Web Service for Controlling the Quality of Measurements of Global Solar Irradiation,” Solar Energy, Vol. 73, No. 6, 2002, pp. 475-480. doi:10.1016/S0038-092X(02)00121-4
[22] P. Blanc, B. Gschwind, M. Lefèvre and L. Wald, “The HelioClim Project: Surface Solar Irradiance Data for Climate Applications,” Remote Sensing, Vol. 3, No. 2, 2011, pp. 343-361. doi:10.3390/rs3020343

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.