A Late 20th Century European Climate Shift: Fingerprint of Regional Brightening?

Abstract

We investigate the spatial extent of a statistically highly significant shift in atmospheric temperatures over Europe around 1987-1988 using a boot-strap change point algorithm. According to this algorithm, this change point (average warming of about one degree Celsius) is statistically highly significant (p > 99.9999%). The change point is consistently present in satellite and surface temperature measurements as well as temperature re-analyses and ocean heat content over most of Western Europe. We also find a connection with parts of the North Atlantic Ocean and eastern Asia. Although the time of change coincides with the North Atlantic Oscillation (NAO) going from negative to positive, the consistent warmer temperatures throughout the decades after 1987-1988 does not coincide with a persistent shift of the NAO, as it returns to a neutral/negative in the 1990’s. Furthermore, the shift does not coincide with any other known mode of multidecadal internal climate variability. We argue that the notion of a shift is “spurious”, i.e. the result of a fast change in Europe from dimming to brightening combined with an accidental sequence of cold (negative NAO) and warm (positive) NAO years during this period. The “shift” could therefore be considered as a fingerprint of European brightening during the last few decades.

Share and Cite:

A. Laat and M. Crok, "A Late 20th Century European Climate Shift: Fingerprint of Regional Brightening?," Atmospheric and Climate Sciences, Vol. 3 No. 3, 2013, pp. 291-300. doi: 10.4236/acs.2013.33031.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. J. van Oldenborgh, et al., “Western Europe Is Warming Much Faster than Expected,” Climate of the Past, Vol. 5, No. 1, 2009, pp. 1-12. doi:10.5194/cp-5-1-2009
[2] G. J. van Oldenborgh and A. P. van Ulden, “On the Relationship between Global Warming, Local Warming in the Netherlands and Changes in Circulation in the 20th Century,” International Journal of Climatology, Vol. 23, 2003, pp. 1711-1723. doi:10.1002/joc.966
[3] A. P. van Ulden and G. J. van Oldenborgh, “Large-Scale Atmospheric Circulation Biases and Changes in Global Climate Model Simulations and Their Importance for Climate Change in Central Europe,” Atmospheric Chemistry and Physics, Vol. 6, No. 4, 2006, pp. 863-881. doi:10.5194/acp-6-863-2006
[4] M. Reckermann, et al., “BALTEX—An Interdisciplinary Research Network for the Baltic Sea Region,” Envonmental Research Letters, Vol. 6, No. 4, 2011, Article ID: 045205.
[5] A. P. van Ulden, G. Lenderink, B. van den Hurk and E. van Meijgaard, “Circulation Statistics and Climate Change in Central Europe: Prudence Simulations and Observations,” Climatic Change, Vol. 81, No. S1, 2007, pp. 179-192. doi:10.1007/s10584-006-9212-5
[6] S. Keevallik, “Shifts in Meteorological Regime of the Late Winter and Early Spring in Estonia during Recent Decades,” Theoretical and Applied Climatology, Vol. 105, No. 1-2, 2011, pp. 209-215. doi:10.1007/s00704-010-0356-x
[7] S. Keevallik and T. Soomere, “Shifts in Early Spring Wind Regime in North-East Europe (1955-2007),” Climate of the Past, Vol. 4, No. 3, 2008, pp. 147-152. doi:10.5194/cp-4-147-2008
[8] A. Lehmann, K. Getzlaff and J. Harla, “Detailed Assessment of Climate Variability in the Baltic Sea Area for the Period 1958-2009,” Climatic Research, Vol. 46, 2011, pp. 285-196. doi:10.3354/cr00876
[9] G. van der Schrier, A. van Ulden and G. J. van Oldenborgh, “The Construction of a Central Netherlands Temperature,” Climate of the Past, Vol. 7, No. 2, 2011, pp. 527-542. doi:10.5194/cp-7-527-2011
[10] IPCC, “Summary for Policymakers,” In: Field, et al., Eds., Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, Cambridge University Press, Cambridge and New York, 2011. http://ipcc-wg2.gov/SREX/
[11] A. N. Pettitt, “A Simple Cumulative Sum Type Statistic for the Change-Point Problem with Zero-One Observations,” Biometrika, Vo. 67, No. 1, 1980, pp. 79-84. doi:10.1093/biomet/67.1.79
[12] W. A. Taylor, “Change-Point Analysis: A Powerful New Tool for Detecting Changes,” 2000. http://www.variation.com/cpa/tech/changepoint.html
[13] B. Efron and R. J. Tibshirani, “An Introduction to the Bootstrap,” Chapman and Hall, New York, 1993.
[14] J. Reeves, J. Chen, X. L. Wang, R. Lund and Q. Q. Lu, “A Review and Comparison of Change Point Detection Techniques for Climate Data,” Journal of Applied Meteorology and Climatology, Vol. 46, 2007, pp. 900-915. doi:10.1175/JAM2493.1
[15] J. R. Christy, W. B. Norris, R. W. Spencer and J. J. Hnilo, “Tropospheric Temperature Change Since 1979 from Tropical Radiosonde and Satellite Measurements,” Journal of Geophysical Research—Atmospheres, Vol. 112, No. 6, 2007, Article ID: D06102. doi:10.1029/2005JD006881
[16] C. A. Mears and F. J. Wentz, “Construction of the RSS V3.2 Lower-Tropospheric Temperature Dataset from the MSU and AMSU Microwave Sounders,” Journal of Atmospheric Oceanic Technology, Vol. 26, No. 8, 2009, pp. 1493-1509. doi:10.1175/2009JTECHA1237.1
[17] E. Kalnay, et al., “The NCEP/NCAR 40-Year Reanalysis Project,” Bulletin of the American Meteorological Society, Vol. 77, No. 3, 1996, pp. 437-470. doi:10.1175/1520-0477(1996)077%3C0437:TNYRP%3E2.0.CO;2
[18] D. P. Dee, et al., “The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System,” Quarterly Journal of the Royal Meteorological Society, Vol. 137, No. 656, 2011, pp. 553-597. doi:10.1002/qj.828
[19] P. D. Jones, M. New, D. E. Parker, S. Martin and I. G. Rigor, “Surface Air Temperature and Its Variations over the Last 150 Years,” Reviews in Geophysics, Vol. 37, No. 2, 1999, pp. 173-199. doi:10.1029/1999RG900002
[20] N. A. Rayner, et al., “Globally Complete Analyses of Sea Surface Temperature, Sea Ice and Night Marine Air Temperature, 1871-2000,” Journal of Geophysical Research— Atmospheres, Vol. 108, No. D14, 2003, Article ID: 4407. doi:10.1029/2002JD002670
[21] N. A. Rayner, et al., “Improved Analyses of Changes and Uncertainties in Marine Temperature Measured in Situ Since the Mid-Nineteenth Century: The HadSST2 Dataset,” Journal of Climate, Vol. 19, 2006, pp. 446-469. doi:10.1175/JCLI3637.1
[22] P. Brohan, J. J. Kennedy, I. Harris, S. F. B. Tett and P. D. Jones, “Uncertainty Estimates in Regional and Global Observed Temperature Changes: A New Dataset from 1850,” Journal of Geophysical Research—Atmospheres, Vol. 111, 2006, Article ID: D12106. doi:10.1029/2005JD006548
[23] J. S. Whitaker, G. P. Compo, X. Wei and T. M. Hamill, “Reanalysis without Radiosondes Using Ensemble Data Assimilation,” Monthly Weather Review, Vol. 132, No. 5, 2004, pp. 1190-1200. doi:10.1175/1520-0493(2004)132%3C1190:RWRUED%3E2.0.CO;2
[24] G. P. Compo, J. S. Whitaker and P. D. Sardeshmukh, “Feasibility of a 100-Year Reanalysis Using Only Surface Pressure Data,” Bulletin of the American Meteorological Society, Vol. 87, No. 2, 2006, pp. 175-190. doi:10.1002/qj.776
[25] G. P. Compo, et al., “The Twentieth Century Reanalysis Project,” Quarterly Journal of the Royal Meteorological Society, Vol. 137, No. 654, 2009, pp. 1-28. doi:10.1002/qj.776
[26] S. Levitus, S. I. Antonov, J. L. Antonov, T. P. Boyer, R. A. Locamini and H. E. Garcia, “Global Ocean Heat Content 1955-2008 in Light of Recently Revealed Instrumentation Problems,” Geophysical Research Letters, Vol. 36, No. 7, 2009, Article ID: L07608. doi:10.1029/2008GL037155
[27] M. Chiacchio and M. Wild, “Influence of NAO and Clouds on Long-Term Seasonal Variations of Surface Solar Radiation in Europe,” Journal of Geophysical Research—Atmospheres, Vol. 115, No. D4, 2010, Article ID: D00D22. doi:10.1029/2009JD012182
[28] G. Foster and S. Rahmstorf, “Global Temperature Evolution 1979-2010,” Environmental Research Letters, Vol. 6, 2011, Article ID: 044022. doi:10.1088/1748-9326/6/4/044022
[29] T. DelSole, M. K. Tippett and J. Shukla, “A Significant Component of Unforced Multidecadal Variability in the Recent Acceleration of Global Warming,” Journal of Climate, Vol. 24, No. 3, 2010, pp. 909-926.
[30] M. Wild, “Global Dimming and Brightening: A Review,” Journal of Geophysical Research—Atmospheres, Vol. 114, No. D10, 2009, Article ID: D00D16. doi:10.1029/2008JD011470
[31] M. Mudelsee, “Climate Time Series Analysis, Classical Statistical and Bootstrap methods,” Atmospheric and Oceanographic Sciences Library, Springer, New York, 2010.
[32] S. Smeekes, “Bootstrapping Nonstationary Time Series,” Ph.D. Thesis, Maastricht Research School of Economics of Technology and Organizations, Maastricht University, The Netherlands, 2009.
[33] A. Sterl, “On the (In) Homogeneity of Reanalysis Products,” Journal of Climate, Vol. 17, No. 19, 2004, pp. 3866-3873. doi:10.1175/1520-0442(2004)017%3C3866:OTIORP%3E2.0.CO;2
[34] J. A. Screen and I. Simmonds, “Erroneous Arctic Temperature Trends in the ERA-40 Reanalysis: A Closer Look,” Journal of Climate, Vol. 24, No. 10, 2011, pp. 2620-2627. doi:10.1175/2010JCLI4054.1
[35] P. D. Jones, et al., “Extension to the North Atlantic Oscillation Using Early Instrumental Pressure Observations from Gibraltar and South-West Iceland,” International Journal of Climatology, Vol. 17, 1997, pp. 1433-1450.
[36] A. G. Barnston and R. E. Livezey, “Classification, Seasonality and Persistence of Low-Frequency Atmospheric Circulation Patterns,” Monthly Weather Review, Vol. 115, 1987, pp. 1083-1126.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.