Share This Article:

Time-Dependent Ferrofluid Dynamics in Symmetry Breaking Transverse

Abstract Full-Text HTML XML Download Download as PDF (Size:3626KB) PP. 116-126
DOI: 10.4236/ojfd.2013.32015    3,477 Downloads   5,214 Views   Citations

ABSTRACT

We investigate the Taylor-Couette flow of a rotating ferrofluid under the influence of symmetry breaking transverse magnetic field in counter-rotating small-aspect-ratio setup. We find only changing the magnetic field strength can drive the dynamics from time-periodic limit-cycle solution to time-independent steady fixed-point solution and vice versa. Thereby both solutions exist in symmetry related offering mode-two symmetry with left-or right-winding characteristics due to finite transverse magnetic field. Furthermore the time-periodic limit-cycle solutions offer alternately stroboscoping both helical left-and right-winding contributions of mode-two symmetry. The Navier-Stokes equations are solved with a second order time splitting method combined with spatial discretization of hybrid finite difference and Galerkin method.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

S. Altmeyer, "Time-Dependent Ferrofluid Dynamics in Symmetry Breaking Transverse," Open Journal of Fluid Dynamics, Vol. 3 No. 2, 2013, pp. 116-126. doi: 10.4236/ojfd.2013.32015.

References

[1] G. I. Taylor, “Stability of a Viscous Liquid Contained between Two Rotating Cylinders,” Philosophical Transac tions of the Royal Society A, Vol. 223, No. 605-615, 1923, pp. 289-343. doi:10.1098/rsta.1923.0008
[2] R. Tagg, “The Couette-Taylor Problem,” Nonlinear Science Today, Vol. 4, No. 3, 1994, pp. 1-25.
[3] P. Chossat and G. Iooss, “The Couette-Taylor Problem,” Springer, Berlin, 1994. doi:10.1007/978-1-4612-4300-7
[4] R. C. DiPrima and H. L. Swinney, “Instabilities and Transition in Flow between Concentric Rotating Cylinders,” In: H. L. Swinney and J. G. Gollub, Eds., Hydrodynamic Instabilities and the Transition to Turbulence, Topics in Applied Physics, Vol. 45, Springer, Berlin, 1985, pp. 139-180.
[5] C. D. Andereck, S. S. Liu and H. L. Swinney, “Flow Regimes in a Circular Couette System with Independently Rotating Cylinders,” Journal of Fluid Mechanics, Vol. 164, 1986, pp. 155-183. doi:10.1017/S0022112086002513
[6] R. E. Rosensweig, “Ferrohydrodynamics,” Cambridge University Press, Cambridge, 1985.
[7] J. E. Hart, “A Magnetic Fluid Laboratory Model of the Global Buoyancy and Wind-Driven Ocean Circulation: Analysis,” Dynamics of Atmospheres and Oceans, Vol. 41, No. 2, 2006, pp. 121–138. doi:10.1016/j.dynatmoce.2006.03.001
[8] J. E. Hart and S. Kittelman, “A Magnetic Fluid Laboratory Model of the Global Buoyancy and Wind-Driven Ocean Circulation: Experiments,” Dynamics of Atmospheres and Oceans, Vol. 41, No. 2, 2006, pp. 139-147. doi:10.1016/j.dynatmoce.2006.03.002
[9] M. I. Shliomis, “Effective Viscosity of Magnetic Suspensions,” Soviet Journal of Experimental and Theoretical Physics, Vol. 34, 1972, p. 1291.
[10] S. Altmeyer, C. Hoffmann, A. Leschhorn and M. Lücke, “Influence of Homogeneous Magnetic Fields on the Flow of a Ferrofluid in the Taylor-Couette System,” Physical Review E, Vol. 82, No. 1, 2010, Article ID: 016321. doi:10.1103/PhysRevE.82.016321
[11] M. Reindl and S. Odenbach, “Effect of Axial and Trans Verse Magnetic Fields on the Flow Behavior of Ferrofluids Featuring Different Levels of Interparticle Interaction,” Physics of Fluids, Vol. 23, No. 9, 2011, Article ID: 093102. doi:10.1063/1.3633341
[12] M. Holderied, L. Schwab and K. Stierstadt, “Rotational Viscosity of Ferrofluids and the Taylor Instability in a Magnetic Field,” The European Physical Journal, Vol. 70, No. 4, 1988, pp. 431-433. doi:10.1007/BF01312116
[13] A. N. Vislovich, V. A. Novikov and A. K. Sinitsyn, “Influence of a Magnetic Field on the Taylor Instability in Magnetic Fluids,” Journal of Applied Mechanics and Technical Physics, Vol. 27, No. 1, 1986, pp. 72-78. doi:10.1007/BF00911123
[14] M. Niklas, “Influence of Magnetic Fields on Taylor Vortex Formation in Magnetic Fluids,” Zeitschrift für Physik B Condensed Matter, Vol. 68, No. 4, 1987, pp. 493-501. doi:10.1007/BF01471080
[15] M. Niklas, H. Müller-Krumbhaar and M. Lücke, “Taylor-Vortex Flow of Ferrofluids in the Presence of General Magnetic Fields,” Journal of Magnetism and Magnetic Materials, Vol. 81, No. 1-2, 1989, pp. 29-38. doi:10.1016/0304-8853(89)90225-4
[16] O. Ambacher, S. Odenbach and K. Stierstadt, “Rotational Viscosity in Ferrofluids,” Zeitschrift für Physik B Condensed Matter, Vol. 86, No. 1, 1992, pp. 29-32. doi:10.1007/BF01323543
[17] J. Singh and R. Bajaj, “Couette Flow in Ferrofluids with Magnetic Field,” Journal of Magnetism and Magnetic Materials, Vol. 294, No. 1, 2005, pp. 53-62. doi:10.1016/j.jmmm.2004.10.123
[18] A. Leschhorn, M. Lücke, C. Hoffmann and S. Altmeyer, “Stability of Circular Couette Flow of a Ferrofluid in an Axial Magnetic Field: Influence of Polydispersity,” Physical Review E, Vol. 79, No. 3, 2009, Article ID: 036308. doi:10.1103/PhysRevE.79.036308
[19] S. Altmeyer, J. Lopez and Y. Do, “Influence of an Inhomogeneous Internal Magnetic Field on the Flow Dynamics of Ferrofluid between Differentially Rotating Cylinders,” Physical Review E, Vol. 85, No. 6, 2012, Article ID: 066314. doi:10.1103/PhysRevE.85.066314
[20] S. Altmeyer, J. Lopez and Y. Do, “Effect of Elongational Flow on a Ferrofluid under Magnetic Field,” Physical Review E.
[21] S. Altmeyer, A. Leschhorn, C. Hoffmann and M. Lücke, “Elongational Flow Effects on the Vortex Growth out of Couette Flow in Ferrofluids,” Physical Review E, Vol. 87, No. 5, 2013, Article ID: 053010. doi:10.1103/PhysRevE.87.053010
[22] T. B. Benjamin, “Bifurcation Phenomena in Steady Flows of a Viscous Fluid. I. Theory,” Proceedings of the Royal Society A, Vol. 356, No. 1696, 1978, pp. 1-26. doi:10.1098/rspa.1978.0028
[23] T. B. Benjamin, “Bifurcation Phenomena in Steady Flows of a Viscous Fluid. II. Experiments,” Proceedings of the Royal Society A, Vol. 356, No. 1696, 1987, pp. 27-43. doi:10.1098/rspa.1978.0030
[24] K. A. Cliffe, J. J. Kobine and T. Mullin, “The Role of Anomalous Modes in Taylor-Couette Flow,” Proceedings of the Royal Society A, Vol. 439, No. 1906, 1992, pp. 341-357. doi:10.1098/rspa.1992.0154
[25] S. Altmeyer, C. Hoffmann, M. Heise, J. Abshagen, A. Pinter, M. Lücke and G. Pfister, “End Wall Effects on the Transitions between Taylor Vortices and Spiral Vortices,” Physical Review E, Vol. 81, 2010, Article ID: 066313. doi:10.1103/PhysRevE.81.066313
[26] H. Furukawa, T. Watanabe, Y. Toya and I. Nakamura, “Flow Pattern Exchange in the Taylor-Couette System with a Very Small Aspect Ratio,” Physical Review E, Vol. 65, No. 3, 2002, Article ID: 036306. doi:10.1103/PhysRevE.65.036306
[27] T. B. Benjamin and T. Mullin, “Anomalous Modes in the Taylor Experiment,” Proceedings of the Royal Society A, Vol. 377, No. 1770, 1981, pp. 221-249. doi:10.1098/rspa.1981.0122
[28] S. Altmeyer, Y. Do, F. Marques and J. Lopez, “Symmetry-Breaking Hopf Bifurcations to 1-, 2-, and 3-Tori in Small-Aspect-Ratio Counterrotating Taylor-Couette Flow”, Physical Review E, Vol. 81, No. 4, 2010, Article ID: 066313. doi:10.1103/PhysRevE.86.046316
[29] K. A. Cliffe, “Numerical Calculations of Two-Cell and Single-Cell Taylor Flows,” Journal of Fluid Mechanics, Vol. 135, 1983, pp. 219-233. doi:10.1017/S0022112083003055
[30] A. Schulz, G. Pfister, and S. J. Tavener, “The Effect of Outer Cylinder Rotation on Taylor-Couette Flow at Small Aspect Ratio,” Physics of Fluids, Vol. 15, No. 2, 2013, pp. 417-425. doi:10.1063/1.1532340
[31] M. Nagata, “On Wavy Instabilities of the Taylor-Vortex Flow between Corotating Cylinders,” Journal of Fluid Mechanics, Vol. 88, 1988, pp. 585-598.
[32] M. Cross and P. Hohenberg, “Pattern Formation outside of Equilibrium,” Reviews of Modern Physics, Vol. 65, No. 3, 1993, pp. 851-1112. doi:10.1103/RevModPhys.65.851
[33] R. Hollerbach and A. Fournier, “End-Effects in Rapidly Rotating Cylindrical Taylor-Couette Flow,” AIP Conference Proceedings, 2004, pp. 114-121.
[34] H. Ji, M. Burin, E. Schartman and J. Goodman, “Hydrodynamic Turbulence Cannot Transport Angular Momentum Effectively in Astrophysical Disks,” Nature, Vol. 444, No. 7117, 2006, pp. 343-346. doi:10.1038/nature05323
[35] F. Stefani, T. Gundrum, G. Gerbeth, G. Rüdiger, M. Schultz, J. Szklarski and R. Hollerbach, “Experimental Evidence for Magnetorotational Instability in a Taylor-Couette Flow under the Influence of a Helical Magnetic Field,” Physical Review Letter, Vol. 97, No. 18, 2006, Article ID: 184502. doi:10.1103/PhysRevLett.97.184502
[36] M. Paoletti and D. Lathrop, “Angular Momentum Transport in Turbulent Flow between Independently Rotating Cylinders,” Physical Review Letter, Vol. 106, No. 2, 2011, Article ID: 024501. doi:10.1103/PhysRevLett.106.024501
[37] D. van Gils, S. Huisman, G.-W. Bruggert, C. Sun and D. Lohse, “Torque Scaling in Turbulent Taylor-Couette Flow with Co-and Counter-rotating Cylinders,” Physical Review Letter, Vol. 106, No. 2, 2011, Article ID: 024502. doi:10.1103/PhysRevLett.106.024502
[38] S. A. Balbus and J. F. Hawley, “Instability, Turbulence, and Enhanced Transport in Accretion Disks,” Reviews of Modern Physics, Vol. 70, No. 1, 1998, pp. 1-53.
[39] S. A. Balbus, “Enhanced Angular Momentum Transport in Accretion Disks,” Annual Review of Astronomy and Astrophysics, Vol. 41, 2003, pp. 555-597. doi:10.1146/annurev.astro.41.081401.155207
[40] P. Langevin, “Magnetisme et Theorie Deselectrons,” Annales de Chemie et de Physique, Vol. 5, No. 7, 1905, pp. 70-127.
[41] J. Embs, H. W. Müller, C. Wagner, K. Knorr and M. Lücke, ”Measuring the Rotational Viscosity of Ferrofluids without Shear Flow,” Physical Review E, Vol. 61, No. 3, 2000, pp. R2196-R2199. doi:10.1103/PhysRevE.61.R2196
[42] H. W. Müller and M. Liu, “Structure of Ferrofluid Dynamics,” Physical Review E, Vol. 64, No. 6, 2001, Article ID: 061405. doi:10.1103/PhysRevE.64.061405
[43] M. Reindl and S. Odenbach, “Influence of a Homogeneous Axial Magnetic Field on Taylor-Couette Flow of Ferrofluids with Low Particle-Particle Interaction,” Experiments in Fluids, Vol. 50, No. 2, 2011, pp. 375-384.
[44] B. Eckhardt, S. Grossmann and D. Lohse, “Flux and Energy Dissipation in Thermal Convection and Shear Flows,” Europhysics Letter, Vol. 78, No. 2, 2007, Article ID: 24001. doi:10.1209/0295-5075/78/24001

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.