Theory of Low- and High-Field Transports in Metallic Single-Wall Nanotubes

DOI: 10.4236/jmp.2013.46120   PDF   HTML   XML   3,469 Downloads   4,848 Views   Citations


Individual metallic single-wall carbon nanotubes show unusual non-Ohmic transport behaviors at low and high bias fields. For low-resistance contact samples, the differential conductance increases with increasing bias, reaching a maximum at ~100 mV. As the bias increases further, drops dramatically [1]. The higher the bias, the system behaves in a more normal (Ohmic) manner. This low-bias anomaly is temperature-dependent (50 - 150 K). We propose a new interpretation. Supercurrents run in the graphene wall below ~150 K. The normal hole currents run on the outer surface of the wall, which are subject to the scattering by phonons and impurities. The currents along the tube length generate circulating magnetic fields and eventually destroy the supercurrent in the wall at high enough bias, and restore the Ohmic behavior. If the prevalent ballistic electron model is adopted, then the temperature-dependent scattering effects cannot be discussed. For the high bias (0.3 - 5 V), (a) the I-V curves are temperature-independent (4 - 150 K), and (b) the currents (magnitudes) saturate. The behavior (a) arises from the fact that the neutral supercurrent below the critical temperature is not accelerated by the electric field. The behavior (b) is caused by the limitation of the number of quantum-states for the “holes” running outside of the tube.

Share and Cite:

S. Fujita, H. Ho and A. Suzuki, "Theory of Low- and High-Field Transports in Metallic Single-Wall Nanotubes," Journal of Modern Physics, Vol. 4 No. 6, 2013, pp. 886-897. doi: 10.4236/jmp.2013.46120.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Z. Yao, C. L. Kane and C. Dekker, Physical Review Letters, Vol. 84, 2000, pp. 2941-2944. doi:10.1103/PhysRevLett.84.2941
[2] R. Saito, G. Dresselhaus and M. S. Dresselhaus, “Physical Properties of Carbon Nanotubes,” Imperial College Press, London, 1998, pp. 35-39. doi:10.1142/9781860943799_0003
[3] S. Iijima, Nature, Vol. 354, 1991, pp. 56-58. doi:10.1038/354056a0
[4] E. Wigner and F. Seitz, Physical Review, Vol. 43, 1933, pp. 804-810. doi:10.1103/PhysRev.43.804
[5] S. Iijima and T. Ichihashi, Nature, Vol. 363, 1993, pp. 603-605. doi:1038/363603a0
[6] D. S. Bethune, et al., Nature, Vol. 363, 1993, pp. 605-607. doi:10.1038/363605a0
[7] S. Fujita, Y. Takato and A. Suzuki, Modern Physics Letters B, Vol. 25, 2011, pp. 223-242.
[8] S. Fujita, S. Godoy and A. Suzuki, Journal of Modern Physics, Vol. 3, 2012, pp. 1550-1555. doi:10.4236/jmp.2012.310191
[9] S. Moriyama, K. Toratani, D. Tsuya, M. Suzuki, Y. Aoyagi and K. Ishibashi, Physica E, Vol. 24, 2004, pp. 46-49. doi:10.1016/j.physe.2004.04.022
[10] S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs and C. Dekker, Nature, Vol. 386, 1997, pp. 474-477. doi:10.1038/386474a0
[11] S. J. Tans, A. R. M. Verschueren and C. Dekker, Nature, Vol. 393, 1998, pp. 49-52. doi:10.1038/29954
[12] L. N. Cooper, Physical Review, Vol. 104, 1956, pp. 1189-1190. doi:10.1103/PhysRev.104.1189
[13] A. Bachtold, M. S. Fuhrer, S. Plyasunov, M. Forero, E. H. Anderson, A. Zettl and P. L. McEuen, Physical Review Letters, Vol. 84, 2000, pp. 6082-6085. doi:10.1103/PhysRevLett.84.6082
[14] N. W. Ashcroft and N. D. Mermin, “Solid State Physics,” Saunders, Philadelphia, 1976, pp. 228-229.
[15] W. A. Harrison, “Solid State Theory,” Dover, New York, 1980, pp. 390-393.
[16] H. Frohlich, Physical Review, Vol. 79, 1950, pp. 845-856. doi:10.1103/PhysRev.79.845
[17] J. Bardeen, L. N. Cooper and J. R. Schrieffer, Physical Review, Vol. 108, 1957, pp. 1175-1204. doi:10.1103/PhysRev.108.1175
[18] S. Fujita, Journal of Superconductivity, Vol. 4, 1991, pp. 297-310. doi:10.1007/BF00618152
[19] S. Fujita, Journal of Superconductivity, Vol. 5, 1992, pp. 83-94. doi:10.1007/BF00618000
[20] S. Fujita and S. Watanabe, Journal of Superconductivity, Vol. 5, 1992, pp. 219-237. doi:10.1007/BF00617622
[21] S. Fujita and S. Watanabe, Journal of Superconductivity, Vol. 6, 1993, pp. 75-79. doi:10.1007/BF00617804
[22] S. Fujita and S. Godoy, Journal of Superconductivity, Vol. 6, 1993, pp. 373-379. doi:10.1007/BF00617974
[23] J. R. Schrieffer, “Theory of Superconductivity,” Benjamin, New York, 1964, p. 33.
[24] P. A. M. Dirac, “Principle of Quantum Mechanics,” 4th Edition, Oxford University Press, London, 1958, pp. 136-138.
[25] P. C. Hohenberg, Physical Review, Vol. 158, 1967, pp. 383-386. doi:10.1103/PhysRev.158.383
[26] N. D. Mermin and H. Wagner, Physical Review Letters, Vol. 17, 1966, pp. 1133-1136. doi:10.1103/PhysRevLett.17.1133
[27] S. Fujita, K. Ito and S. Godoy, “Quantum Theory of Conducting Matter: Superconductivity,” Springer, New York, 2009, pp. 79-81. doi:10.1007/978-0-387-88211-6

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.