Decolorization of triphenyl methane dyes by Fomitopsis feei

Abstract

Six triphenylmethane dyes viz., bromophenol blue, basic fuchsin, methyl violet, methyl green, ethyl violet and malachite green were studied for their decolorization by Fomitopsis feei. Among, basic fuchsin (98%) was maximum decolorized followed by bromophenol blue (96.8%). However, the rate of bromophenol blue decolorization was very fast. There was no correlation between the lignolytic activity and dye decolurization of the dyes. The highest laccase and lignin peroxidase activities were observed in basic fuchsin (46 U/mL) and methyl green (44 U/mL) respectively after 21 days of incubation, which were poor dye degraders. The triphenylmethane reductase enzyme was the responsible enzyme for the decolorization of these triphenyl methane dyes. The treatment by using fungal organisms was considered to be the cost-effective and ecofriendly method of decolourization of effluents discharged from the dye industries.

Share and Cite:

Nidadavolu, S. , Gudikandula, K. , Pabba, S. and Maringanti, S. (2013) Decolorization of triphenyl methane dyes by Fomitopsis feei. Natural Science, 5, 30-35. doi: 10.4236/ns.2013.56A005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] US Environmental Protection Agency (2005) Waste from the production of dyes and pigments listed as hazardous. Factsheet 530-F-05-004. http://www.epa.gov/epawaste/hazard/wastetypes/wasteid
/dyes/dyes-ffs.pdf
[2] Gregory, P. (1993) Dyes and dyes intermediates. In: Kroschwitz, J.I., Ed., Encyclopedia of Chemical Technology, John Wiley & Sons, New York, 544-545.
[3] Case, R.A.M. and Pearson, J.T. (1954) Tumours of the urinary bladder in workmen engaged in the manufacture and the use of certain dyestuff intermediates in the British chemical industry. British Journal of Indian Medicine, 11, 213-221.
[4] Fernandes, C., Lalitha, V.S. and Rao, K.V.K. (1991) Enhancing effect of malachite green on the development of hepatic pre-neoplastic lesions induced by N-nitrosodie thylamine in rats. Carcinogenesis, 12, 839-845. doi:10.1093/carcin/12.5.839
[5] Littlefield, N.A., Blackwell, B.N., Hewitt, C.C. and Gaylor, D.W. (1985) Chronic toxicity and carcinogenicity studies of gentian violet in mice. Fundamental and Applied Toxicology, 5, 902-912. doi:10.1016/0272-0590(85)90172-1
[6] Rao, K.V.K. (1995) Inhibition of DNA synthesis in primary rat hepatocyte cultures by malachite green: A new liver tumor promoter. Toxicology Letters, 81, 107-113. doi:10.1016/0378-4274(95)03413-7
[7] Schnick, R.A. (1988) The impetus to register new thera peutants for aquaculture. Progressive Fish-Culturist, 50, 190-196. doi:10.1577/1548-8640(1988)050<0190:TITRNT>2.3.CO;2
[8] Burchmore, S. and Wilkinson, M. (1993) “Department of the Environment, Water Research Center, Marlow, Buckinghamshire, United Kingdom,” Report no. 316712, Carcinogenesis, 12, 839-845.
[9] Nelson, C.R. and Hites, R.A. (1980) Aromatic amines in and near the Buffalo River. Environmental Science and Technology, 14, 1147-1149. doi:10.1021/es60169a020
[10] Banat, I.M., Nigam, P., Singh, D. and Marchant, R. (1996) Microbial decolorization of textile-dye-containing effluxents: A review. Bioresource Technology, 58, 217-227. doi:10.1016/S0960-8524(96)00113-7
[11] Azmi, W., Sani, R.K. and Banerjee, U.C. (1998) Biodegradation of triphenylmethane dyes. Enzyme Microbial Technology, 22, 185-191. doi:10.1016/S0141-0229(97)00159-2
[12] Ali, N., Hameed, A. and Ahmed, S. (2008) Decolorization of structurally different textile dyes by Aspergillusniger SA1. World Journal of Microbiology and Biotechnology, 24, 1067-1072. doi:10.1007/s11274-007-9577-2
[13] Ambrosio, S.T. and Campos-Takaki, G.M. (2004) Decolorization of reactiveazo dyes by Cunninghamella elegans UCP 542 under co-metabolic conditions. Bioresource Technology, 91, 69-75. doi:10.1016/S0960-8524(03)00153-6
[14] Fahraeus, G. (1952) Formation of laccase by Polyporus versicolor in different culture media. Physiology Plant, 5, 284-291. doi:10.1111/j.1399-3054.1952.tb07716.x
[15] Husseiny, S.M. (2008) Biodegradation of the reactive and direct dyes using Egyptian isolates. Journal of Applied Science Research, 4, 599-606. http://www.aensiweb.com/jasr/jasr/2008/599-606.pdf
[16] Sumathi, S. and Manju, B.S. (2000) Uptake of reactive textile dyes by Aspergillus foetidus. Enzyme Microbial Technology, 27, 347-355. doi:10.1016/S0141-0229(00)00234-9
[17] Zhang, X., Youxun, L., Keliang, Y. and Hangjun, W. (2007) Decolorization of anthraquinone-type dye by bilirubin oxidase producing nonligninolytic fungus Myrothecium spp. IMER1. Journal of Bioscience and Bioengineering, 104, 104-110. doi:10.1263/jbb.104.104
[18] Lyra, E.S., Moreira, K.A., Porto, T.S., Carneiroda Cunha, M.N., Paz Jr., F.B., Neto, B.B., Lima-Filho, J.L., Caval canti, M.A.Q., Converti, A. and Porto, A.L.P. (2009) De colorization of synthetic dyes by basidiomycetes isolated from woods of the Atlantic Forest (PE). Brazilian World Journal of Microbiology and Biotechnology, 25, 1499-1504. doi:10.1007/s11274-009-0034-2
[19] López, M.J., Guisado, G., Vargas-García, M.C., Suárez Estrella, F. and Moreno, J. (2006) Decolorization of industrial dyes by ligninolytic microorganisms isolated from composting environment. Enzyme Microbial Technology, 40, 42-45. doi:10.1016/j.enzmictec.2005.10.035
[20] Coll, M.P., Fernandez-Abalos, J.M., Villanueva, JR., San tamaria, R. and Perez, P. (1993) Purification and characterization of phenoloxidase (Laccase) from the lignin— Degrading basidiomycete PM I (CECT 2971). Applied Environmental Microbiology, 59, 2607-2613. http://aem.highwire.org/content
/59/8/2607.full.pdf+html
[21] Sarakanen, S., Razal, R.A., Piccariello, T., et al. (1999) Lignin peroxidase: Toward a classification of its role in vivo. Journal of Biological Chemistry, 266, 3636-3643. http://www.jbc.org/content/266/6/
3636.long
[22] Jang, M.-S., Lee, Y.-M., Kim, C.-H., Lee, J.-H., Kang, D.-W., Kim, S.-J. and Lee, Y.-C. (2005) Triphenylmethane reductase from Citrobacter sp. Strain KCTC 18061P: Purification, characterization, gene cloning, and overexpression of a functional protein in Escherichia coli. Applied Environmental Microbiology, 71, 7955-7960. doi:10.1128/AEM.71.12.7955-7960.2005
[23] Field, A.J., de Jong, E., Feijoo-Costa, F.E. and de Bont, J.A.M. (1993) Screening for ligninolytic fungi applicable to the biodegradation of xenobiotics. Trends in Biotech nology, 11, 44-48. doi:10.1016/0167-7799(93)90121-O
[24] Bumpus, J.A. and Brock, B.J. (1988) Biodegradation of crystal violet by white rot fungus Phanerochaete chrysosporium. Applied Environmental Microbiology, 54, 1143-1149. http://aem.asm.org/content/54/5/1143
[25] Cullen, D. (1997) Recent advances on the molecular genetics of ligninolytic fungi. Journal of Biotechnology, 53, 273-289. doi:10.1016/S0168-1656(97)01684-2
[26] Gold, M.H. and Alic, M. (1993) Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiology Review, 57, 605-622.
[27] Vasdev, K., Kuhad, R.C. and Saxena, R.K. (1995) Decolorization of triphenylmethane dyes by the birds nest fungus Cyathus bulleri. Current Microbiology, 30, 269-272. doi:10.1007/BF00295500
[28] Shin, K.S. and Kim, C.J. (1998) Decolorization of artifi cial dyes by peroxidase from the white-rot fungus Pleurotus ostreatus. Biotechnology Letters, 20, 569-572. doi:10.1023/A:1005301812253
[29] Boer, C.G., Obici, L., de Souzam C.G.M. and Peralta, R.M. (2004) Decolorization of synthetic dyes by solid state cultures of Lentinula (Lentinus) edodes producing manganese peroxidase as the main ligninolytic enzyme. Biore source Technology, 94, 107-112. doi:10.1016/j.biortech.2003.12.015
[30] Ollikka, P., Alhonmaki, K., Leppanen, V.M., Glumoff, T., Raijola, T. and Suominen, I. (1993) Decolorization of azo, triphenylmethane, heterocyclic, and polymeric dyes by lignin peroxidase isozymes from Phanerochaete chrysosporium. Applied Environment and Microbiology, 59, 4010-4016.
[31] Krishnaveni, M. and Kowsalya, R. (2011) Characteriza tion and decolorization of dye and textile effluent by lac case from Pleurotus florida—A white-rot fungi. International Journal of Pharma and Bio Sciences, 2, B117-B123.
[32] Eichlerova, I., Homolka, L. and Nerud, F. (2006) Ability of industrial dyes decolorization and ligninolytic enzymes production by different Pleurotus species with special attention on Pleurotus calyptratus, strain CCBAS 461. Process Biochemistry, 41, 941-946. doi:10.1016/j.procbio.2005.10.
018
[33] Dey, S., Maiti, T.K. and Bhattacharyya, B.C. (1994) Production of some extracellular enzymes by a lignin peroxidase-producing brown rot fungus, Polyporus ostreiformis and its comparative abilities for lignin degradation and dye decolorization. Applied Environment and Micro biology, 60, 4216-4218. http://aem.asm.org/content/60/11/4216.full.pdf
[34] Freitag, M. and Morrell, J.J. (1992) Decolorization of the polymeric dye Poly R-478 by wood-inhabiting fungi. Cannadian Journal of Microbiology, 38, 811-822. doi:10.1139/m92-133
[35] Parshetti, G., Kalme, S., Saratale, G. and Govindwar, S. (2006) Biodegradation of malachite green by Kocuria rosea MTCC 1532. Acta Chimica Slovenica, 53, 492-498. http://acta.chem-soc.si/53/53-4-492.pdf

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.