Evaluation of the inhibitory effect of docosahexaenoic acid and arachidonic acid on the initial stage of amyloid β1-42 polymerization by fluorescence correlation spectroscopy

Abstract

Amyloid β(Aβ)1-42 fibrillation is a crucial step in the development of pathological hallmarks, such as neuritic plaques and neurofibrillary tangles, of Alzheimer’s disease (AD). In this study, we evaluated the effects of free docosahexaenoic acid (DHA), an essential brain polyunsaturated fatty acid (PUFA), on the inhibition of Aβ1-42 fibrillation by fluorescence correlation spectroscopy (FCS), a technique capable of detecting molecular movements and interactions in solution. We also examined whether free arachidonic acid (AA), eicosapentaenoic acid (EPA), and metabolites of DHA, including neuroprotectin D1 (NPD1, 10S, 17S-dihydroxy-DHA), resolvin D1 (RvD1, 7S, 8R, 17S-trihydroxy-DHA), and didocosahexaenoyl glycerol (diDHA), affect Aβ1-42 polymerization. The results of the FCS study reveal that DHA and AA significantly reduced the diffusion time of TAMRA (5-carboxytetramethylrhoda-mine)-Aβ1-42 by 28% and 31%, respectively, while EPA, NPD1, RvD1, and diDHA had no effects on diffusion time. These results indicate that DHA and AA inhibited Aβ1-42 polymerization and that their inhibitory effects occurred at the initial stage of Aβ1-42 polymerization. This study will advance the research on PUFAs in preventing AD progression.

Share and Cite:

Miwa, K. , Hashimoto, M. , Hossain, S. , Katakura, M. and Shido, O. (2013) Evaluation of the inhibitory effect of docosahexaenoic acid and arachidonic acid on the initial stage of amyloid β1-42 polymerization by fluorescence correlation spectroscopy. Advances in Alzheimer's Disease, 2, 66-72. doi: 10.4236/aad.2013.22009.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Selkoe, D.J. (1991) The molecular pathology of Alzheimer’s disease. Neuron, 6, 487-498. doi:10.1016/0896-6273(91)90052-2
[2] Selkoe, D.J. (1993) Physiological production of the β amyloid protein and the mechanism of Alzheimer’s disease. Trends in Neurosciences, 16, 403-409. doi:10.1016/0166-2236(93)90008-A
[3] Iwatsubo, T., Odaka, A., Suzuki, N., Mizusawa, H., Nukina, N. and Ihara, Y. (1994) Visualization of A β 42(43) and A β 40 in senile plaques with end-specific A β monoclonals: Evidence that an initially deposited species is A β 42(43). Neuron, 13, 45-53. doi:10.1016/0896-6273(94)90458-8
[4] Berman, D.E., Dall’Armi, C., Voronov, S.V., McIntire, L.B., Zhang, H., Moore, A.Z., Staniszewski, A., Arancio, O., Kim, T.W. and Di Paolo, G. (2008) Oligomeric amyloid-β peptide disrupts phosphatidyl-inositol-4, 5-bisphophate metabolism. Nature Neuroscience, 11, 547-554. doi:10.1038/nn.2100
[5] Naiki, H. and Nakakuki, K. (1996) First-order kinetic model of Alzheimer’s β-amyloid fibril extension in vitro. Laboratory Investigation, 74, 374-83.
[6] Stine, W.B. Jr., Snyder, S.W., Ladror, U.S., Wade, W.S., Miller. M.F., Perun, T.J., Holzman, T.F. and Krafft, G.A. (1996) The nanometer-scale structure of amyloid-β visualized by atomic force microscopy. Journal of Protein Chemistry, 15, 193-203. doi:10.1007/BF01887400
[7] Harper, J.D., Wong, S.S., Lieber, C.M. and Lansbury, P.T. (1997) Observation of metastable Aβ amyloid protofibrils by atomic force microscopy. Chemistry & Biology, 4, 119-125. doi:10.1016/S1074-5521(97)90255-6
[8] Harper, J.D., Lieber, C.M. and Lansbury Jr., P.T. (1997) Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer’s disease amyloid-β protein. Chemistry & Biology, 4, 951-959. doi:10.1016/S1074-5521(97)90303-3
[9] Terzi, E., Holzemann, G. and Seelig, J. (1995) Self-association of β-amyloid peptide (1-40) in solution and binding to lipid membranes. Journal of Molecular Biology, 252, 633-642. doi:10.1006/jmbi.1995.0525
[10] Hilbich, C., Kisters-Woike, B., Reed, J., Masters, C.L., and Beyreuther, K. (1991) Aggregation and secondary structure of synthetic amyloid β A4 peptides of Alzheimer’s disease. Journal of Molecular Biology, 218, 149-163. doi:10.1016/0022-2836(91)90881-6
[11] Burdick, D., Soreghan, B., Kwon, M., Kosmoski, J., Knauer, M., Henschen, A., Yates, J., Cotman, C. and Glabe, C. (1992) Assembly and aggregation properties of synthetic Alzheimer’s A4/β amyloid peptide analogs. Journal of Biological Chemistry, 267, 546-554.
[12] Sweeney, P.J., Darker, J.G., Neville, W.A., Humphries, J. and Camilleri, P. (1993) Electrophoretic techniques for the analysis of synthetic amyloid β-A4-related peptides. Analytical Biochemistry, 212, 179-184. doi:10.1006/abio.1993.1310
[13] Garzon-Rodriguez, W., Sepulveda-Becerra, M., Milton, S. and Glabe, C.G. (1997) Soluble amyloid Aβ-(1-40) exists as a stable dimer at low concentrations. Journal of Biological Chemistry, 272, 21037-21044. doi:10.1074/jbc.272.34.21037
[14] Shen, C.L., Fitzgerald, M.C. and Murphy, R.M. (1994) Effect of acid predissolution on fibril size and fibril flexibility of synthetic β-amyloid peptide. Biophysical Journal, 67, 1238-1246. doi:10.1016/S0006-3495(94)80593-4
[15] LeVine, H. III. (1993) Thioflavine T interaction with synthetic Alzheimer’s disease β-amyloid peptides: Detection of amyloid aggregation in solution. Protein Science, 2, 404-410. doi:10.1002/pro.5560020312
[16] Serpell, L.C. (2000) Alzheimer’s amyloid fibrils: Structure and assembly. Biochimica et Biophysica Acta, 1502, 16-30. doi:10.1016/S0925-4439(00)00029-6
[17] Barrow, C.J. and Zagorski, M.G. (1991) Solution structures of β peptide and its constituent fragments: Relation to amyloid deposition. Science, 253, 179-182. doi:10.1126/science.1853202
[18] Shao, H., Jao, S., Ma, K. and Zagorski, M.G. (1999) Solution structures of micelle-bound amyloid β-(1-40) and β-(1-42) peptides of Alzheimer’s disease. Journal of Molecular Biology, 285, 755-773. doi:10.1006/jmbi.1998.2348
[19] Kirkitadze, M.D., Condron, M.M. and Teplow, D.B. (2001) Identification and characterization of key kinetics intermediates in amyloid β-protein fibrillogenesis. Journal of Molecular Biology, 312, 1103-1119. doi:10.1006/jmbi.2001.4970
[20] Hashimoto, M., Shahdat, H.M., Yamashita, S., Katakura, M., Tanabe, Y., Fujiwara, H., Gamoh, S., Miyazawa, T., Arai, H., Shimada, T. and Shido, O. (2008) Docosahexaenoic acid disrupts in vitro amyloid β1-40 fibrillation and concomitantly inhibits amyloid levels in cerebral cortex of Alzheimer’s disease model rats. Journal of Neurochemistry, 107, 1634-1646. doi:10.1111/j.1471-4159.2008.05731.x
[21] Hossain, S., Hashimoto, M., Katakura, M., Miwa, K., Shimada, T. and Shido, O. (2009) Mechanism of docosahexaenoic acid-induced inhibition of in vitro Aβ1-42 fibrillation and Aβ1-42 induced toxicity in SH-SY5Y cells. Journal of Neurochemistry, 111, 568-579. doi:10.1111/j.1471-4159.2009.06336.x
[22] Hashimoto, M., Shahdat, H.M., Katakura, M., Tanabe, Y., Gamoh, S., Miwa, K., Shimada, T. and Shido, O. (2009) Effects of docosahexaenoic acid on in vitro amyloid beta peptide 25-35 fibrillation. Biochimica et Biophysica Acta, 1791, 289-296. doi:10.1016/j.bbalip.2009.01.012
[23] Hashimoto, M., Katakura, M., Hossain, S., Rahman, A., Shimada, T. and Shido, O. (2011) Docosahexaenoic acid withstands the Aβ25-35 induced neurotoxicity in SH-SY5Y cells. Journal of Nutritional Biochemistry, 22, 22-29. doi:10.1016/j.jnutbio.2009.11.005
[24] Ono, K., Hasegawa, K., Naiki, H. and Yamada, M. (2004) Curcumin has potent anti-amyloidogenic effects for Alzheimer’s β-amyloid fibrils in vitro. Journal of Neurosci- ence Research, 75, 742-750. doi:10.1002/jnr.20025
[25] Rezai-Zadeh, K., Arendash, G.W., Hou, H., Fernandez, F., Jansen, M., Runfeldt, M., Shytle, R.D. and Tan, J. (2008) Green tea epigallocatechin-3-gallate (EGCG) reduces β-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer’s transgenic mice. Brain Research, 1214, 177-187. doi:10.1016/j.brainres.2008.02.107
[26] Luo, Y., Smith, J.V., Paramasivam, V., Burdick, A., Curry, K.J., Buford, J.P., Khan, I., Netzer, W.J., Xu, H. and Butko, P. (2002) Inhibition of amyloid-β aggregation and caspase-3 activation by the Ginkgo biloba extract EGb761. Proceedings of the National Academy of Sciences of the United States of America, 99, 12197-12202. doi:10.1073/pnas.182425199
[27] Lauritzen, L., Hansen, H.S., J?rgensen, M.H. and Michaelsen, K.F. (2001) The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Progress in Lipid Research, 40, 1-94. doi:10.1016/S0163-7827(00)00017-5
[28] Innis, S.M. (2007) Dietary (n-3) fatty acids and brain development. Journal of Nutrition, 137, 855-859.
[29] Tozuka, Y., Wada, E. and Wada, K. (2009) Bio-communication between mother and offspring: Lessons from animals and new perspectives for brain science. Journal of Pharmacological Sciences, 110, 127-132. doi:10.1254/jphs.09R01CP
[30] Hashimoto, M., Hossain, S., Shimada, T., Sugioka, K., Yamasaki, H., Fujii, Y., Ishibashi, Y., Oka, J. and Shido, O. (2002) Docosahexaenoic acid provides protection from impairment of learning ability in Alzheimer’s disease model rats. Journal of Neurochemistry, 81, 1084-1091. doi:10.1046/j.1471-4159.2002.00905.x
[31] Soderberg, M., Edlund, C., Kristensson, K. and Dallner, G. (1991) Fatty acid composition of brain phospholipids in aging and in Alzheimer’s Disease. Lipids, 26, 421-425. doi:10.1007/BF02536067
[32] Grimm, M.O., Kuchenbecker, J., Gr?sgen, S., Burg, V.K., Hundsd?rfer, B., Rothhaar, T.L., Friess, P., deWilde, M.C., Broersen, L.M., Penke, B., Péter, M., Vígh, L., Grimm, H.S. and Hartmann, T. (2011) Docosahexaenoic acid reduces amyloid β production via multiple pleiotropic mechanisms. Journal of Biological Chemistry, 286, 14028-14039. doi:10.1074/jbc.M110.182329
[33] Gamoh, S., Hashimoto, M., Sugioka, K., Hossain, S., Hata N., Misawa, Y. and Masumura, S. (1999) Chronic administration of docosahexaenoic acid improves reference memory-related learning ability in young rats. Neuroscience, 93, 237-241. doi:10.1016/S0306-4522(99)00107-4
[34] Ariel, A. and Serhan, C.N. (2007) Resolvins and protectins in the terminatrion program of acute inflammation. Trends in Immunology, 28, 176-183. doi:10.1016/j.it.2007.02.007
[35] Miljanich, G.P., Sklar, L.A., White, D.L. and Dratz, E.A. (1979) Disaturated and dipolyun-saturated phospholipids in the bovine retinal rod outer segment disk membrane. Biochimica et Biophysica Acta, 552, 294-306. doi:10.1016/0005-2736(79)90284-0
[36] Bell, M.V., Dick, J.R. and Buda, C. (1997) Molecular speciation of fish sperm phos-pholipids: Large amounts of dipolyunsatusated phosphatidyl-serine. Lipids, 32, 1085-1091. doi:10.1007/s11745-997-0140-y
[37] Bell, M.V. and Tocher, D.R. (1989) Molecular species composition of the major phos-pholipids in brain and retina from rainbow trout (Salmo gairdneri). Biochemical Journal, 264, 909-915.
[38] Tjernberg, L.O., Paramanik, A., Bj?rling, S., Thyberg, P., Thyberg, J., Nordstedt, C., Berndt, K.D., Terenius, L. and Rigler, R. (1999) Amyloid β-peptide polymerization stud- ied using fluorescence correlation spectroscopy. Chemistry & Biology, 6, 53-62. doi:10.1016/S1074-5521(99)80020-9
[39] Pitschke, M., Prior, R., Haupt, M. and Riesner, D. (1998) Detection of single amy-loid β-protein aggregates in the cerebrospinal fluid of Alzheimer’s patients by fluorescence correlation spectroscopy. Nature Medicine, 4, 832-834. doi:10.1038/nm0798-832
[40] Hashimoto, M., Tanabe, Y., Fujii, Y., Kikuta, T., Shibata, H. and Shido, O. (2005) Chronic administration of docosahexaenoic acid ameliorates the impairment of spatial cognition learning ability in amyloid β-infused rats. Journal of Nutrition, 135, 549-555.
[41] Kotani, S., Sakaguchi, E., Warashina, S., Matsukawa, N., Ishikura, Y., Kiso, Y., Sakakibara, M., Yoshimoto, T., Guo, J. and Yamashima, T. (2006) Dietary supplementation of arachidonic and docosahexaenoic acids improves cognitive dysfunction. Neuroscience Research, 56, 159-164. doi:10.1016/j.neures.2006.06.010
[42] Song, C. and Horrobin, D. (2004) Omega-3 fatty acid ethyl-eicosapentaenoate, but not soybean oil, attenuates memory impairment induced by central IL-1β administration. Journal of Lipid Research, 45, 1112-1121. doi:10.1194/jlr.M300526-JLR200
[43] Hashimoto, M., Hoss-ain, S., Tanabe, Y., Kawashima, A., Harada, T., Yano, T., Mizuguchi, K. and Shido, O. (2009) The protective effect of dietary eicosapentaenoic acid against impairment of spatial cognition learning ability in rats infused with amyloid β1-40. Journal of Nutritional Biochemistry, 20, 965-973. doi:10.1016/j.jnutbio.2008.08.009
[44] Ishiguro, J., Tada, T., Ogihara, T., Ohzawa, N., Murakami, K. and Kosuzume, H. (1988) Metabolic disposition of ethyl eicosapentaenoate and its metabolites in rats and dogs. Journal of Pharmacobio-Dynamics, 11, 251-261. doi:10.1248/bpb1978.11.251
[45] Martins, J.G., Bentsen, H. and Puri, B.K. (2012) EPA in major depressive disorder: Eicosapentaenoic acid appears to be the key omega 3 fatty acid component associated with efficacy in major depressive disorder: A critique of Bloch and Hannestad and updated metaanalysis. Molecular Psychiatry, 17, 1-6.
[46] Stillwell, W. and Wassall, S.R. (2003) Docosahexaenoic acid: Membrane properties of a unique fatty acid. Chemistry and Physics of Lipids, 126, 1-27. doi:10.1016/S0009-3084(03)00101-4
[47] Yonezawa, Y., Hada, T., Uryu, K., Iijima, H., Yoshida, H. and Mizushina, Y. (2006) Inhibitory action of C22-fatty acids on DNA polymerases and DNA topoisomerases. International Journal of molecular Medicine, 18, 583-588.
[48] Mizushina, Y., Dairaku, I., Yanaka, N., Takeuchi, T., Ishimaru, C., Sugawara, F., Yoshida, H. and Kato, N. (2007) Inhibitory action of polyunasaturated fatty acids on IMP dehydrogenase. Biochimie, 89, 581-590. doi:10.1016/j.biochi.2007.01.009
[49] Lukiw, W.J. and Bazan, N.G. (2008) Docosahexaenoic acid and the aging brain. Journal of Nutritioin, 138, 2510-2514. doi:10.3945/jn.108.096016
[50] Serhan, C.N., Gotlinger, K., Hong, S., Lu, Y., Siegelman, J., Baer, T., Yang, R., Colgan, S.P. and Petasis, N.A. (2006) Anti-inflammatory actions of neuroprotectin D1/ Protectin D1 and its natural stereoisomers: Assignment of dihydroxy-containing docosatrienes. Journal of Immunology, 176, 1848-1859.
[51] Lukiw, W.J., Cui, J.G., Marcheselli, V.L., Bodker, M., Botkjaer, A., Gotlinger, K., Serhan, C.N. and Bazan, N.G. (2005) A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzhemier disease. Journal of Clinical Investigation, 115, 2774-2783. doi:10.1172/JCI25420
[52] Serhan, C.N. and Chiang, N. (2008) Endgenous pro-resolving and anti-inflammatory lipid mediators: A new pharmacologic genus. British Journal of Pharmacology, 153, S200-S215. doi:10.1038/sj.bjp.0707489
[53] Wiegand, R.D. and Anderson, R.E. (1983) Phospholipid molecular species of frog outer segment membranes. Experimental Eye Research, 37, 159-173. doi:10.1016/0014-4835(83)90075-1
[54] Neil, A.R. and Masters, C.J. (1973) Metabolism of fatty acids by ovine spermatozoa. Journal of the Society for Reproduction and Fertility, 34, 279-287. doi:10.1530/jrf.0.0340279
[55] Breckernridge, W.C., Gombos, G. and Morgan, I.G. (1972) The lipid composition of adult rat brain synaptosomal plasma membranes. Biochimica et Biophysica Acta, 266, 695-707. doi:10.1016/0005-2736(72)90365-3

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.