Electrical Response of Silanization of Rubber Mixtures

Abstract

There are a number of experimental methods aimed at the investigation of structural transformations. These methods differ from each other by a spectrum of quantitative indicators and their application is limited by the nature of investigated structures and processes. In a sense, it is also possible to consider the silanization of rubber mixtures as a structural transformation. Experimental observation of transformations of disordered rubber mixtures type structures can be quite difficult. The contribution deals with the theoretical principles of experimental methodology oriented on the investigation of silanization of rubber mixtures. We analyze the electrical response of rubber mixtures silanization. Our attention is focused on the modeling of a possible electrical response of a chemical reaction in a system consisting of several components. The results of the model are compared with experimental data measured during the silanization reaction in rubber mixtures.

Share and Cite:

E. Seliga, O. Bošák, S. Minárik, M. Kubliha, V. Labaš and J. Slabeycius, "Electrical Response of Silanization of Rubber Mixtures," Advances in Materials Physics and Chemistry, Vol. 3 No. 2, 2013, pp. 105-111. doi: 10.4236/ampc.2013.32016.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Z. H. Wang and H. Zhang, “Effective Activation Energy Ue(T,J,H) in Textured Bi1.84Pb0.4Sr2Ca2Cu3Oy Silver-Clamped Thick Films,” Physica C: Superconductivity, Vol. 320, No. 3-4, 1999, pp. 218-224. doi:10.1016/S0921-4534(99)00349-4
[2] M. Mizuno, H. Kokubo and K. Honda, “Preparation, Structure and Conduction Properties of SeCN-Containing Mixed Anion TTF Conductors,” Journal of Materials Chemistry, Vol. 11, No. 9, 2001, pp. 2192-2198. doi:10.1039/b101864g
[3] J. Hakl, “Over-Adiabatic Calorimetry (OAC),” Thermochimica Acta, Vol. 81, 1984, pp. 319-325. doi:10.1016/0040-6031(84)85137-0
[4] S. Srivastava, N. Metha, P. Agarval, D. Kumar and A. Kumar, “Thermal Characterization of Se100-xSbx Glasses Using Isoconversional Method,” Journal of Ovonic Research, Vol. 4, No. 6, 2008, pp. 147-157.
[5] B. Prochowska-Klisch and A. Malecki, Thermochimica Acta, Vol. 335, No. 1-2, 1999, pp. 99-104.
[6] P. Kostial, M. Mokrysová, J. Sisáková, Z. Mosková and S. Rusnáková, “A System to Measure both Inner and Outer Car Tire Temperatures ‘in Situ’,” International Journal of Thermophysics, Vol. 30, No. 1, 2009, pp. 334-340. doi:10.1007/s10765-008-0461-6
[7] S. Rusnáková, J. Slabeycius and V. Rusnák, “The Possibilities of Electronic Speckle Pattern Interferometry by Investigation of Composite Materials,” Proceedings of SPIE—The International Society for Optical Engineering, San Diego, 13-17 August 2006, 6p.
[8] D. Seidl, P. Kostial, Z. Jancíková, I. Ruziak, J. David, R. Puchky and I. Kopal, “Complex Contactless Flash Thermal Analyser of Low Conductive Materials,” Proceedings of the 13th International Carpathian Control Conference, High Tatras, 28-31 May 2012, pp. 628-630.
[9] P. Kostial, Z. Jancíková, I. Ruziak, I. Kopal and P. Jonsta, “The Influence of Rubber Blend Aging and Sample Homogeneity on Heat Transport Phenomena,” Defect and Diffusion Forum, Vol. 312-315, 2011, pp. 183-186. doi:10.4028/www.scientific.net/DDF.312-315.183
[10] J. Durfinová, I. Capek, I. ChodáK, A. Liska, P. Kostial, M. Chromcíková, P. Pocarovský, M. Lacko, et al., “Plasticizers Influence on Physicalmechanical Properties and DMTA of Rubber Mixtures—Part A,” Chemicke Listy, Vol. 105, No. 15, 2011, pp. s325-s327.
[11] Z. Jonsta, P. Kostial, I. Ruziak, P. Jonsta, J. Jurciová, Z. Jancíková, J. David and I. Kopal, “Advanced Fillers Enhancing Thermal and Mechanical Properties of Rubber Blends,” Journal of Nano Research, Vol. 13, 2011, pp. 27-32. doi:10.4028/www.scientific.net/JNanoR.13.27
[12] O. Bosák, J. Kaluzný, J. Preto, J. Vacval, M. Kubliha and J. Hronkovic, “Electrical Properties of a Rubber Blend Used in the Tyre Industry,” Polymers for Advanced Technologies, Vol. 18, No. 2, 2007, pp. 141-143. doi:10.1002/pat.808
[13] S. Minárik, M. Kubliha, V. Labas and J. Kaluzný, “Computer Simulation of Alternate Conductivity of Polymer System,” Journal of Optoelectronics and Advanced Materials, Vol. 8, No. 4, 2006, pp. 1524-1528.
[14] M. Kubliha, “Investigating Structural Changes and Defects of Non-Metallic Materials via Electrical Methods,” For-schungszentrum Dresden-Rossendorf, Dresden, 2009.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.