Share This Article:

Quantifying Isotibolone in Raw Materials of Tibolone

Full-Text HTML XML Download Download as PDF (Size:549KB) PP. 283-287
DOI: 10.4236/pp.2013.43041    3,420 Downloads   5,231 Views   Citations

ABSTRACT

Tibolone, a synthetic steroid, is used in the treatment of natural or surgical menopause disturbs resultant of estrogenic deficiency. Isotibolone (Δ4-tibolone) is one of the three active metabolic degradation products of tibolone that displays progestagenic effects on carcinoma cell growth and gene regulation. Isotibolone can be present in raw material of tibolone due to some inadequate synthesis or storage. Its presence is necessary to be identified and quantified in active pharmaceutical ingredients (API), before its use in the manufacturing of medicines. After a recent study on the crystal structure determination of isotibolone, quantitative phase analyses of both tibolone and isotibolone in raw materials and tablets became possible to be conducted. X-ray powder diffraction is one recommended tool for this purpose, but it can be highly frustrating due to the extreme peak overlap when conventional laboratory equipments are used. In this work we show that the use of Brazilian Synchrotron Light Source X-ray powder diffraction data and the Rietveld method can be successfully applied to identify and quantify the isotibolone in two samples of tibolone raw materials.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

S. Antonio, A. Gomes, F. Ferreira, G. Araujo and C. Paiva-Santos, "Quantifying Isotibolone in Raw Materials of Tibolone," Pharmacology & Pharmacy, Vol. 4 No. 3, 2013, pp. 283-287. doi: 10.4236/pp.2013.43041.

References

[1] K. Modelska and S. Cummings, “Clinical Review 140— Tibolone for Postmenopausal Women: Systematic Review of Randomized Trials,” Journal of Clinical Endocrinology and Metabolism, Vol. 87, No. 1, 2002, pp. 1623. doi:10.1210/jc.87.1.16
[2] T. Van Engelgem and J. Marechal, “Pharmaceutical Composition Comprising Cyclodextrin Complex of Tibolone,” Patent No. WO2005084682A1, 2005.
[3] S. X. M. Boerrigter, C. J. M. van den Hoogenhof, H. Meekes, P. Verwer and P. Bennema, “Pseudomorphic Crystal Growth of the Model Steroid Methyl Analogue of Norethindrone,” Journal of Physical Chemistry B, Vol. 106, No. 51, 2002, pp. 13224-13230. doi:10.1021/jp014416q
[4] P. H. G. M. Kirchholtes, G. A. J. M. T. Sas, P. H. G. Kirchholtes, G. A. J. M. Sas, M. K. P. Gerard, S. G. A. J. Theresia and S. G. A. J. M. Theresia, “High Purity Composition Comprising (7-Alpha,17alpha)-17-hydroxy-7-methyl-19-nor-17-pregn-5(10)-en-20-yn-3-one,” US Patent No. 6969708B1, 2000.
[5] “European Pharmacopoeia,” 5th Edition, Supplement 5.7, 2006, pp. 5124-5125.
[6] S. I. Sampath, V. P. Neelima and S. Raj, “Quantitative Analyses of Complex Pharmaceutical Mixtures by the Rietveld Method,” Powder Diffraction, Vol. 16, No. 1, 2001, pp. 20-24. doi:10.1154/1.1332076
[7] C. E. Botez, P. W. Stephens, C. Nunes and R. Suryanarayanan, “Crystal Structure of Anhydrous Delta-d-Mannitol,” Powder Diffraction, Vol. 18, No. 3, 2003, pp. 214218. doi:10.1154/1.1582460
[8] W. Dong, C. Gilmore, G. Barr, C. Dallman, N. Feeder and S. Terry, “A Quick Method for the Quantitative Analysis of Mixtures. 1. Powder X-Ray Diffraction,” Journal of Pharmaceutical Sciences, Vol. 97, No. 6, 2008, pp. 2260-2276. doi:10.1002/jps.21142
[9] F. F. Ferreira, S. G. Antonio, P. C. P. Rosa and C. D. O. Paiva-Santos, “Crystal Structure Determination of Mebendazole Form a Using High-Resolution Synchrotron X-Ray Powder Diffraction Data,” Journal of Pharmaceutical Sciences, Vol. 99, No. 4, 2010, pp. 1734-1744.
[10] F. F. Ferreira, A. C. Trindade, S. G. Antonio and C. D. Paiva-Santos, “Crystal Structure of Propylthiouracil Determined Using High-Resolution Synchrotron X-Ray Powder Diffraction,” CrystEngComm, Vol. 13, No. 17, 2011, pp. 5474-5479. doi:10.1039/c1ce05362k
[11] A. Gomez, S. G. Antonio, G. L. B. Araujo, F. F. Ferreira and C. D. O. Paiva-Santos, “Crystal Structure of Isotibolone: A Major Degradation Product of Tibolone,” CrystEngComm, Vol. 14, No. 8, 2012, pp. 2826-2830. doi:10.1039/c2ce06504e
[12] F. F. Ferreira, E. Granado, W. Carvalho, S. W. Kycia, D. Bruno and R. Droppa, “X-Ray Powder Diffraction Beamline at D10B of LNLS: Application to the Ba2FeReO6 Double Perovskite,” Journal of Synchrotron Radiation, Vol. 13, No. 1, 2006, pp. 46-53. doi:10.1107/S0909049505039208
[13] J. P. Declercq, M. Vanmeerssche and F. J. Zeelen, “Conformational-Analysis of 3-Oxo 5(10)-Unsaturated Steroids-Single-Crystal X-Ray Structure-Analysis of 17-Hydroxy-7-alpha-methyl-19-nor-17-alpha-pregn-5(10)-en-20-yn-3-one (Org OD 14),” Recueil Des Travaux Chimiques Des Pays-Bas—Journal of the Royal Netherlands Chemical Society, Vol. 103, No. 5, 1984, pp. 145-147. doi:10.1002/recl.19841030501
[14] A. Schouten and J. A. Kanters, “Structure of the Triclinic Modification of 17β-Hydroxy-19-nor-7α-methyl-17α-pregn-5(10)-en-20-yn-3-one (ORG OD14),” Acta Crystallographica Section C, Vol. 47, No. 8, 1991, pp. 17541756. doi:10.1107/S0108270190014196
[15] A. Coelho, “Topas Academic v4.1,” Coelho Software, Brisbane, Australia, 2007.
[16] D. Balzar and H. Ledbetter, “Voigt-Function Modeling in Fourier-Analysis of Size-Broadened and Strain-Broadened X-Ray-Diffraction Peaks,” Journal of Applied Crystallography, Vol. 26, No. 1, 1993, pp. 97-103. doi:10.1107/S0021889892008987
[17] M. Jarvinen, “Application of Symmetrized Harmonics Expansion to Correction of the Preferred Orientation Effect,” Journal of Applied Crystallography, Vol. 26, No. 4, 1993, pp. 525-531. doi:10.1107/S0021889893001219
[18] R. W. Cheary and A. A. Coelho, “Axial Divergence in a Conventional X-Ray Powder Diffractometer. I. Theoretical Foundations,” Journal of Applied Crystallography, Vol. 31, No. 6, 1998, pp. 851-861. doi:10.1107/S0021889898006876
[19] R. W. Cheary and A. A. Coelho, “Axial Divergence in a Conventional X-Ray Powder Diffractometer. II. Realization and Evaluation in a Fundamental-Parameter Profile Fitting Procedure,” Journal of Applied Crystallography, Vol. 31, No. 6, 1998, pp. 862-868. doi:10.1107/S0021889898006888
[20] R. J. Hill and C.J. Howard, “Quantitative Phase-Analysis from Neutron Powder Diffraction Data Using the Rietveld Method,” Journal of Applied Crystallography, Vol. 20, No. 6, 1987, pp. 467-474. doi:10.1107/S0021889887086199
[21] H. M. Rietveld, “A Profile Refinement Method for Nuclear and Magnetic Structures,” Journal of Applied Crystallography, Vol. 2, No. 2, 1969, pp. 65-71. doi:10.1107/S0021889869006558
[22] R. A. Young and D. B. Wiles, “Profile Shape Functions in Rietveld Refinements,” Journal of Applied Crystallography, Vol. 15, No. 4, 1982, pp. 430-438. doi:10.1107/S002188988201231X

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.