A Review beyond the borders: Proteomics of microclonial black fungi and black yeasts

Abstract

Black microcolonial fungi and black yeasts are inhabitants of extreme environments like vulcanic, desert and polar regions, where they are exposed to enhanced temperature alterations and desiccation. They have developed, therefore, extraordinary biologic characteristics which are mainly based on the expression of proteins, however, these are rarely studied and known. The review article presented here is focused on the obstacles and solutions for the proteomic analyses of this very particular fungal species.

Share and Cite:

Marzban, G. , Tesei, D. and Sterflinger, K. (2013) A Review beyond the borders: Proteomics of microclonial black fungi and black yeasts. Natural Science, 5, 640-645. doi: 10.4236/ns.2013.55079.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Staley, J.T., Palmer, F. and Adams, J.B. (1982) Microcolonial fungi: Common inhabitants on desert rocks? Science, 215, 1093-1095. doi:10.1126/science.215.4536.1093
[2] Wollenzien, U., De Hoog, G.S. Krumbein, W.E. and Urzi, C. (1995) On the isolation of microcolonial fungi occuring on and in marbia and other calcareous rocks. Science of Total Environments, 167, 287-297. doi:10.1016/0048-9697(95)04589-S
[3] Sterflinger, K. and Prillinger H.J. (2001) Molecular taxonomy and biodiversity of rock fungal communities in an urban environment (Vienna, Austria). Antonie Van Leewenhoek, 80, 275-286. doi:10.1023/A:1013060308809
[4] Ruibal, C., Platatas, G. and Bills, G.F. (2004) Isolation and characterization of melanized fungi from limestone formations in Mallorca. Mycological Progress, 4, 23-38. doi:10.1007/s11557-006-0107-7
[5] Selbmann, L., de Hoog, G.S., Mazzaglia, A., Friedmann, E.I. and Onofori, S. (2005) Fungi at the edge of life: Cryptendolithic black fungi from Antarctic desert. Studies in Mycology, 51, 1-32.
[6] Sterflinger, K., Krumbein, W.E., Lellau, T. and Rullkoter, J. (1999) Microbially mediated orange patination of rock surfaces. Ancient Biomolecules Journal, 3, 51-65.
[7] Gorbushina, A.A., Kollova, E.R. and Sherstneva, O.A. (2008) Cellular responses of microcolonial rock fungi to long term desiccation and subsequent rehydration. Sudies in Mycology, 61, 91-97. doi:10.3114/sim.2008.61.09
[8] Dadachova, E., Bryan, R.A., Huang, X., Moadel, T., Schweizer, A.D., Aisen, P., Nosanchuk, J.D. and Casadevall, A. (2007) Ionizing Radiation Changes the Electronic Properties of Melanin and Enhances the Growth of Melanized Fungi. PLoS ONE, 5, 1-13.
[9] Sterflinger, K., Tesei, D. and Zakharova, K. (2012) Fungi in hot and cold deserts with particular reference to microcolonial fungi. Fungi Ecology, 5, 453-462. doi:10.1016/j.funeco.2011.12.007
[10] Onofori, S., de la Torre, R., de Vera, J.-P., Ott, S., Zucconi, L., Selbmann, L., Scalzi, G., Venkateswaran, K.J., Rabbow, E., Sanchez, F.J. and Horneck, G. (2012) Survival of rockcoloniziong organisms after 1.5 years in outer space. Astrobiology, 12, 508-516. doi:10.1089/ast.2011.0736
[11] Isola, D., Marzban, G., Selbmann, L, Onofori, S., Laimer, M. and Sterflinger K. (2011) Sample preparation and 2DE procedure for protein expression profiling of black microclonial fungi. Fungal Biology, 10, 971-977. doi:10.1016/j.funbio.2011.03.001
[12] Tesei, D., Marzban, G., Zakharova, K., Isola, D., Selbmann, L. and Sterflinger, K. (2012) Alteration of protein patterns in black rock inhabiting fungi as a response to different temperatures. Fungal Biology, 116, 932-940. doi:10.1016/j.funbio.2012.06.004
[13] Bhadauria, V., Banniza, S., Wei, Y. and Peng, Y. (2009) Reverse genetic for functional genomics of phytopathogenic fungi and oomycetes. Comparative and Functional Genomics, 2009, 1-11. doi:10.1155/2009/380719
[14] Barreiro, C., García-Estrada, C. and Martín J.F. (2012) Proteomics Methodology Applied to the Analysis of Filamentous Fungi—New Trends for an Impressive Diverse Group of Organisms. In: Jeevan, K.P., Ed., Tandem Mass Spectrometry—Applications and Principles, InTech, New York, 127-160.
[15] Lim, D., Hain, P., Walsh, B., Bergquist, P. and Nevalainen, H. (2001) Proteins associated with the cell envelope of Trichoderma reesei: A proteomic approach. Proteomics, 1, 899-909. doi:10.1002/1615-9861(200107)1:7<899::AID-PROT899>3.0.CO;2-#
[16] Fernandez-Acero, F.J., Jorge, I., Calvo, E., Vallejo, I., Carbu, M., Camafeita, E., Lopez, J.A., Cantoral, J.M. and Jorrin, J. (2006) Two-dimensional electrophoresis protein profile of the phytopathogenic fungus Botrytis cinera. Proteomics, 1, 88-96. doi:10.1002/pmic.200500436
[17] Coumanns, J.V., Moens, P.D., Poljak, A., Al-Jaadi, S., Pereg, L. and Raftery, M.J. (2010) Plant-extract-induced changes in the proteome of the soil-borne pathogenic fungus Thielaviopsis basicola. Proteomics, 10, 1573-1591. doi:10.1002/pmic.200900301
[18] Jami, M.S., Garcia-Estrada, C., Barreiro, C., Cuadrado, A.A., Salehi-Najafabadi, Z. and Martin, J.F. (2010) The Penicillium crysogenum extracellular proteome. Conversionfrom a food-rotting strain to a versatile cell factory for white biotechnology. Molecular Cell Proteomics, 9, 2729-2744. doi:10.1074/mcp.M110.001412
[19] Yildirim, V., Ozcan, S., Becher, D., Bütter, K., Hecker, M. and Ozcengiz, G. (2011) Characterization of proteome alterations in Phanerochaete chrysosporium in response to lead exposure. Proteome Science, 9, 12. doi:10.1186/1477-5956-9-12
[20] Kniemeyer, O., Lessing, F., Scheibner, O., Hertweck, C. and Brakhage, A.A. (2006) Optimisation of a 2-D gel electrophoresis protocol fort he human-pathogenic fungus Aspergillus fumigatus. Current Genetics, 49, 178-189. doi:10.1007/s00294-005-0047-9
[21] V?disch, M., Scherlach, K., Winkler, R., Hertweck, C., Braun, H.P., Roth, M., Haas, H., Werner, ER, Brakhage, A.A. and Kniemeyer, O. (2011) Analysis of the Aspergillus fumigatus reveals metabolic changes and the activetion of the pseurtin A biosynthesis gene cluster in responser to hypoxia. Journal of Proteome Research, 10, 2508-2524. doi:10.1021/pr1012812
[22] Kubitschek-Berreira, P.H., Curty, N., Neves, G.W., Gil, C. and Lopes-Bezerra, L.M. (2013) Differential proteomic analysis of Aspergillus fumigatus morphotypes reveals putative drug targets. Journal of Proteomics, 78, 522-534. doi:10.1016/j.jprot.2012.10.022
[23] Suh, M.J., Fedorova, N.D., Cagas, S.E., Hastings, S., Fleischmann R.D., Peterson, S.N., Perlin, D.S., Nierman, W.C., Pieper, R. and Momany, M. (2012) Development stagespecific proteomic profiling uncovers small lineage specific proteins most abundant in the Aspergillus fumigatos conidial proteome. Proteome Science, 10, 30. doi:10.1186/1477-5956-10-30
[24] Lu, X., Sun, J., Nimtz, M., Wissing, J., Zeng, A.P. and Rinas, U. (2010) The intraan extracellular proteome of Aspergillus niger growing on defined medium with xylose or maltose as carbon substrate. Microbiologic Cell Factories, 20, 1-13.
[25] Oh, Y.T., Ahn, C.S., Kim, J.G., Ro, H.S., Lee, C.W. and Kim, J.W. (2010) Proteomic analysis of early phase of conidia germination in Aspergillus nidulans. Fungal Genetic and Biology, 47, 246-253. doi:10.1016/j.fgb.2009.11.002
[26] S?rensen, L.M., Lametsch, R., Andersen, M.R., Nielsen, P.V. and Frisvad, J.C. (2009) Proteome analysis of Aspergillus niger: Lactate added in starch-containing medium can increase production of mycotoxin fumunisin B2 by modifying acetyl-CoA metabolism. BMC Microbiology, 9, 255. doi:10.1186/1471-2180-9-255
[27] Marzban, G., Herndl, A., Maghuly, F., Katinger, H. and Laimer, M. (2008) Mapping of fruit allergens by 2D electrophoresis and immunodetection. Expert Review Proteomics, 5, 61-75. doi:10.1586/14789450.5.1.61
[28] Rizwan, M., Miller, I., Tasneem, F., B?hm, J., Gemeiner, M. and Razzazi-Fazeli, E. (2010) Proteome analysis of Aspergillus ochraceus. Mycotoxin Research, 26, 171-180.
[29] Razzazi-Fazeli, E., Rizwan, M., Mayrhofer, C. and N?bauer, K. (2011) The use of proteomics as a novel tool in aflatoxin research. In: Aflatoxins—Biochemistry and Molecular Biology, InTech Publisher, New York.
[30] Zakharova, K., Tesei, D., Marzban, G., Dijksterhuis, J., Wyatt, T. and Sterflinger, K. (2012) Microcolonial fungi on rocks: A life in constant draught? Mycopathologia. doi:10.1007/s11046-012-9592-1
[31] Jorin-Novo, J.V., Maldonado, A.M., Echevarrira-Zomeno, S., Valledor, L., Castillejo, M.A., Curto, M., Valero, J., Sghaier, B., Donoso, G. and Redondo, I. (2009) Second generation proteomic techniques, an appropriate experimental design, and data analysis to fulfil MIAPE standards, increase plant proteome coverage and expand biological knowledghe. Journal of Proteomics, 72, 285-314. doi:10.1016/j.jprot.2009.01.026
[32] Dodds, P.N., Rafiqi, M., Gan, P.H. Hardham, A.R., Jones, D.A. and Ellis, J.G. (2009) Effects of biotrophic fungi and oomycetes: pathogenicity factors and triggers of host resistance. New Physiology, 183, 993-1000. doi:10.1111/j.1469-8137.2009.02922.x
[33] Bruneau, J.M., Magnin, T., Tagat, E., Legrand, R., Bernard, M. Diaquin, M., Fudali, C. and Latge, J.P. (2001) Proteome analysis of Aspergillus fumigatus identifies glycosylphosphatidylinositol-anchored proteins associated to the cell wall biosynthesis. Electrophoresis, 22, 28122823. doi:10.1002/1522-2683(200108)22:13<2812::AID-ELPS2812>3.0.CO;2-Q
[34] Ouyang, H., Luo, Y., Zhang, L. and Jin, C. (2010) Proteomic analysis of Aspergillus fumagatus total membrane protein identifies proteins associated with the glycoconjugates and cell wall biosynthesis using 2D LC-MS-MS. Molecular Biotechnology, 44, 177-189. doi:10.1007/s12033-009-9224-2
[35] Gonzalez-Fernandez, R., Prats, E. and Jorrin-Novo, J.V. (2010) Proteomics of plant pathogenic fungi. Journal of Biomedicine and Biotechnology, 1-30. doi:10.1155/2010/932527
[36] Taylor, C.E., Paton, N.W., Lilley, K.S., Binz, P.A., Julian, R.K., Jones, A.R., Zhu, W., Apweiler, R., Aebersold, R., Deutsch, E.W., Dunn, M.J., Heck, A.J., Leitner, A., Macht, M., Mann, M., Martens, L., Neubert, T.A., Patterson, S.D., Ping, P., Seymour, S.L., Souda, P., Tsugita, A., Vandekerckhove, J., Vondriska, T.M., Whitelegge, J.P., Wilkins, M.R., Xenarios, I., Yates, J.R. and Hermjakob, H. (2007) The minimum information about a proteomic experiment (MIAPE). Nature Biotechnology, 78, 887-893. doi:10.1038/nbt1329

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.