Share This Article:

What elk, wolves and caterpillars have in common—The perfect forager theorem

Full-Text HTML Download Download as PDF (Size:626KB) PP. 133-144
DOI: 10.4236/oje.2013.32016    3,045 Downloads   5,617 Views  

ABSTRACT

It is widely accepted that the Marginal Value Theorem (MVT) describes optimal foraging strategies of animals and the mechanism proposed by the MVT has been supported by a number of field observations. However, findings of many researchers indicate that in natural conditions foragers do not always behave according to the MVT. To address this inconsistency, in a series of computer simulation experiments, we examined the behaviour of four types of foragers having specific foraging efficiencies and using the MVT strategies in 15 different landscapes in an ideal environment (no intra-and inter-specific interactions). We used data on elk (Cervus elaphus) to construct our virtual forager. Contrary to the widely accepted understanding of the MVT (residence time in a patch should be longer in environments where travel time between patches is longer) we found that in environments with the same average patch quality and varying average travel times between patches, patch residence times of some foragers are not affected by travel times. Based on our analysis we propose a mechanism responsible for this observation and formulate the perfect forager theorem (PFT). We also introduce the concepts of a foraging coefficient (F) and foragers’ hub (α), and propose a model to describe the relationship between the perfect forager and all other forager types.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Weclaw, P. and Hudson, R. (2013) What elk, wolves and caterpillars have in common—The perfect forager theorem. Open Journal of Ecology, 3, 133-144. doi: 10.4236/oje.2013.32016.

References

[1] Charnov, E.L. (1976) Optimal foraging, the marginal value theorem. Theoretical Population Biology, 9, 129-136. doi:10.1016/0040-5809(76)90040-X
[2] Best, L. and Bierzychudek, P. (1982) Pollinator foraging on foxglove (Digitalis purpurea): A test of a new model. Evolution, 36, 70-79. doi:10.2307/2407968
[3] Bonser, R., Wright, P.J., Bament, S. and Chukwu, U.O., (2001) Optimal patch use by foraging workers of Lasius fuliginosus, L. Niger and Myrmica ruginodis. Ecological Entomology, 23, 15-21. doi:10.1046/j.1365-2311.1998.00103.x
[4] Jiang, Z. and Hudson, R.J. (1993) Optimal grazing of wapiti (Cervus elaphus) on grassland: Patch and feeding station departure rules. Evolutionary Ecology, 7, 488-498. doi:10.1007/BF01237643
[5] Laca, E.A., Ungar, E.D. and Demment, M.W. (1994) Mechanisms of handling time and intake rate of a large mammalian grazer. Applied Animal Behaviour Science, 39, 3-19. doi:10.1016/0168-1591(94)90011-6
[6] Pyke, G.H. (1978) Optimal foraging in bumblebees and coevolution with their plants. Oecologia, 36, 281-293. doi:10.1007/BF00348054
[7] Wajnberg, E., Fauvergue, X. and Pons, O. (2000) Patch leaving decision rules and the Marginal Value Theorem: An experimental analysis and a simulation model. Behavioral Ecology, 11, 577-586. doi:10.1093/beheco/11.6.577
[8] Carmel, Y. and Ben-Haim, Y. (2005) Info-gap robust-satisficing model of foraging behavior: Do foragers optimize or satisfice? American Naturalist, 166, 633-641. doi:10.1086/491691
[9] Moen, R., Cohen, Y. and Pastor, J. (1998) Linking moose population and plant growth models with a moose energetics model. Ecosystems, 1, 52-63. doi:10.1007/s100219900005
[10] Nonacs, P. (2001) State dependent behavior and the Marginal Value Theorem. Behavioral Ecology, 12, 71-83. doi:10.1093/oxfordjournals.beheco.a000381
[11] Alonso, J.C., Alonso, J.A., Bautista, L.M. and Munoz-Polido, R. (1995) Patch use in cranes: A field test of optimal foraging predictions. Animal Behavior, 49, 1367- 1379. doi:10.1006/anbe.1995.0167
[12] Fortin, D., Boyce, M.S., Merrill, E.H. and Fryxell, J.M. (2004) Foraging costs of vigilance in large mammalian herbivores. Oikos, 107, 172-180. doi:10.1111/j.0030-1299.2004.12976.x
[13] Hansen, J. (1987) Tests of optimal foraging using an operant analogue. In: Kamil, A.C., Krebs, J.R. and Pulliam, H.R., Eds., Foraging Behavior, Plenum Press, New York, 335-362. doi:10.1007/978-1-4613-1839-2_10
[14] Hanson, J. and Green, L. (1989) Foraging decisions: Patch choice and exploitation by pigeons. Animal Behaviour, 37, 968-986. doi:10.1016/0003-3472(89)90141-3
[15] Howell, D.J. and Hartl, D.L. (1980) Optimal foraging in glossophagine bats: When to give up. American Naturalist, 115, 696-704. doi:10.1086/283592
[16] Kamil, A.C., Misthal, R.L. and Stephens, D.W. (1993) Failure of simple optimal foraging models to predict residence time when patch quality is uncertain. Behavioral Ecology, 44, 350-363. doi:10.1093/beheco/4.4.350
[17] Schluter, D. (1982) Optimal foraging in bats: Some comments. American Naturalist, 119, 121-125. doi:10.1086/283896
[18] Isee Systems (2008). http://www.iseesystems.com
[19] Weclaw, P. (2010) Optimal use of resources: Classic foraging theory, satisficing and smart foraging—Modelling foraging behaviors of elk. PhD Thesis, University of Alberta, Edmonton, 202.
[20] Holling, C.S. (1959) The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Canadian Entomologist, 91, 293-320. doi:10.4039/Ent91293-5
[21] Fryxell, J.M., Wilmshurst, J.F. and Sinclair, A.R.E. (2004) Predictive models of movement by serengeti grazers. Ecology, 85, 2429-2435. doi:10.1890/04-0147
[22] Hudson, R.J. and Watkins, W.G. (1986) Foraging rates of wapiti on green and cured pastures. Canadian Journal of Zoology, 64, 1705-1708. doi:10.1139/z86-257
[23] Wickstrom, M.L., Robbins, C.T., Hanley, T.A., Spalinger, D.E. and Parish, S.M. (1984) Food intake and foraging energetics of elk and mule deer. Journal of Wildlife Management, 48, 1285-1301. doi:10.2307/3801789
[24] Owen-Smith, N. (2002) A metaphysiological modelling approach to stability in herbivore-vegetation systems. Ecological Modelling, 149, 153-178. doi:10.1016/S0304-3800(01)00521-X
[25] Clutton-Brock, T.H., Iason, G.R., Albon, S.D. and Guinness, F.E. (1982) Effects of lactation on feeding behaviour and habitat use in wild red deer hinds (Cervus elaphus, Rhum). Journal of Zoology, 198, 227-236. doi:10.1111/j.1469-7998.1982.tb02072.x
[26] Hudson, R.J. and White, R.G. (1985) Bioenergetics of Wild Herbivores, CRC Press, Inc., Florida.
[27] Gedir, J.V. and Hudson, R.J. (2000) Seasonal foraging behavioural compensation in reproductive wapiti hinds (Cervus elaphus canadensis). Applied Animal Behaviour Science, 67, 137-150. doi:10.1016/S0168-1591(99)00117-3
[28] Gates, C.C. and Hudson, R.J. (1983) Foraging behaviour of wapiti in a boreal forest enclosure (Cervus elaphus nelsoni, Alberta). Naturaliste Canadien, 110, 197-206.
[29] Gedir, J.V. and Hudson, R.J. (2000) Estimating dry matter digestibility and intake in wapiti (Cervus elaphus canadensis) using the double n-alkane ratio technique. Small Ruminant Research, 36, 57-62. doi:10.1016/S0921-4488(99)00114-5
[30] Heydon, M.J., Loudon, A.S.I., Milne, J.A. and Brinklow, B.R. (1992) Influence of plane of nutrition on seasonal changes in food intake and reproduction of grazing red deer. In: Brown, R.D., Ed., The Biology of Deer, Springer-Verlag, New York, 279-284. doi:10.1007/978-1-4612-2782-3_62
[31] Gillingham, M.P., Parker, K.L. and Hanley, T.A. (1997) Forage intake by large herbivores in a natural environment: Bout dynamics. Canadian Journal of Zoology, 75, 1118-1128. doi:10.1139/z97-134
[32] Heinrich, B. (1979) Foraging strategies of caterpillars— Leaf damage and possible predator avoidance strategies. Oecologia, 42, 325-337.
[33] Karban, R. (1987) Effects of clonal variation of the host plant, interspecific competition, and climate on the population size of a folivorous thrips. Oecologia, 74, 298-303. doi:10.1007/BF00379373
[34] Heinrich, B. (1993) How avian predators constrain caterpillar foraging. In: Stamp, N.E. and Casey, T.M., Eds., Caterpillars. Ecological and Evolutionary Constraints on Foraging, Chapman and Hall, New York, 224-247.
[35] Illius, A.W., Duncan, P., Richard, C. and Mesochina, P. (2002) Mechanisms of functional response and resource exploitation in browsing roe deer. Journal of Animal Ecology, 71, 723-734. doi:10.1046/j.1365-2656.2002.00643.x
[36] Searle, K.R., Hobbs, N.T. and Shipley, L.A. (2005) Should I stay or should I go? Patch departure decisions by herbivores at multiple scales. Oikos, 111, 417-424. doi:10.1111/j.0030-1299.2005.13918.x
[37] Spalinger, D.E. and Hobbs, N.T. (1992) Mechanisms of foraging in mammalian herbivores: New models of functional response. American Naturalist, 140, 325-348. doi:10.1086/285415
[38] Trudell, J. and White, R.G. (1981) The effect of forage structure and availability on food intake, biting rate, bite size and daily eating time of reindeer. Journal of Applied Ecology, 18, 63-81. doi:10.2307/2402479
[39] Risenhoover, K.L. and Maass, S.A. (1987) The influence of moose on the composition and structure of Isle Royale forests. Canadian Journal of Forest Research, 17, 357-364. doi:10.1139/x87-062
[40] Hayes, R.D. and Harestad, A.S. (2000) Wolf functional response and regulation of moose in the Yukon. Canadian Journal of Zoology, 78, 60-66. doi:10.1139/z99-188
[41] Lomnicki, A. (1978) Individual differences between animals and natural regulation of their numbers. Journal of Animal Ecology, 47, 461-475. doi:10.2307/3794

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.