Share This Article:

The activities of endothelial elastase and cathepsin G in rats at oxidative stress caused by heavy metals salts

Full-Text HTML XML Download Download as PDF (Size:187KB) PP. 208-214
DOI: 10.4236/abc.2013.32026    2,646 Downloads   4,359 Views   Citations

ABSTRACT

CoCl2 introduction increased cathepsin G activity in the heart and liver as well as endothelial elastase (EEl) in kidney that indicated the development of destructive processes. CoCl2 introduction decreased EEl and cathepsin G activities in blood serum and cathepsin G in lungs. HgCl2 injection decreased EEl in blood serum, heart, liver, kidney and cathepsin G in blood serum. These decreasing of proteinases activities may be caused by cytotoxic effects of heavy metals and/or the inclusion of these proteases in the destructive processes and absence of their synthesis and/or release.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Starodub, N. and Samokhina, L. (2013) The activities of endothelial elastase and cathepsin G in rats at oxidative stress caused by heavy metals salts. Advances in Biological Chemistry, 3, 208-214. doi: 10.4236/abc.2013.32026.

References

[1] Lang, I.A., Scarlett, A., Guralnik, J.M., Depledge, M.H., Melzer, D. and Galloway, T.S. (2009) Age-related impairments of mobility associated with cobalt and other heavy metals: data from NHANES 1999-2004. Journal of Toxicology and Environmental Health, 72, 402-409. doi:10.1080/15287390802647336
[2] Mats, J.M., Segura, J.A., Alonso, F.J. and Mrquez, J. (2010) Roles of dioxins and heavy metals in cancer and neurological diseases using ROS-mediated mechanisms. Free Radical Biology & Medicine, 49, 1328-1341.
[3] Tkaczyk, C., Petit, A., Antoniou, J., Zukor, D.J., Tabrizian, M. and Huk, O.L. (2010). Significance of elevated blood metal ion levels in patients with metal-on-metal prostheses: An evaluation of oxidative stress markers. Open Orthopaedic Journal, 4, 221-227.
[4] Kaliman, P.A. and Okhrimenko, C.M. (2005) Cycle of the glucose-fatty acid in the oxidative stress in rats induced by cobalt chloride. Ukrainian Biochemical Journal, 77, 154-158.
[5] Tedtoeva, A.I., Dzugkoeva, P.S., Mozhayeva, I.W. and Dzugkoev, S.G. (2010) Lipid peroxidation, the activity of Na, K-ATFase and antioxidant enzymes in rats with nephropathy induced by cobalt chloride. Biomedical Chemistry, 56, 540-544.
[6] Christova, T.Y., Duribanova, D.B. and Setchenska, M.S. (2002) Enhanced heme oxygenase activity increases the antioxidant defense capacity of guinea pig liver upon acute cobalt chloride loading: Comparison with rat liver. Comparative Biochemistry and Physiology, 131, 177184.
[7] Kamiya, T., Hara, H., Inagaki, N. and Adachi, T. (2010) The effect of hypoxia mimetic cobalt chloride on the expression of EC-SOD in 3T3-L1 adipocytes. Redox Report, 15, 131-137. doi:10.1179/174329210X12650506623483
[8] Padilla, M.A., Elobeid, M., Ruden, D.M. and Allison, D.B. (2010) An examination of the association of selected toxic metals with total and central obesity indices: NHANES 99-02. International Journal of Environmental Research and Public Health, 9, 3332-3347. doi:10.3390/ijerph7093332
[9] Azevedo, B.F., Futuro, Neto Hde, A., Stefanon, I. and Vassallo, D.V. (2011) Acute cardiorespiratory effects of intracisternal injections of mercuric chloride. Neurotoxicology, 32, 350-354. doi:10.1016/j.neuro.2011.02.006
[10] Furieri, L.B., Galán, M., Avendaño, M.S., GarcíaRedondo, A.B., Aguado, A., Martínez, S., Cachofeiro, V., Bartolomé, M.V., Alonso, M.J., Vassallo, D.V. and Salaices, M. (2011) Endothelial dysfunction of rat coronary arteries after exposure to low concentrations of mercury is dependent on reactive oxygen species. British Journal of Pharmacology, 162, 1819-1831. doi:10.1111/j.1476-5381.2011.01203.x
[11] Mahmoud, Z., Ladislas, R., Dominique, C., Pierre-Jean, T., Latifa, B. and Pierre, D. (2002) Serum elastase activity, serum elastase inhibitors, and occurrence of carotid atherosclerotic plaques. Circulation, 105, 2638-2645. doi:10.1161/01.CIR.0000017329.51160.EF
[12] Korkmaz, B., Horwitz, M.S., Jenne, D.E. and Gauthier, F. (2010) Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacological Reviews, 62, 726-759. doi:10.1124/pr.110.002733
[13] Tsuchiya, Y., Okada, G., Kobayashi, S., Chikuma, T. and Hojo, H. (2011) 4-Hydroxy-2-nonenal-modified glyceroldehyde-3-phosphate ehydrogenase is degraded by cathepsin G in rat neutrophils. Oxidative Medicine and Cellular Longevity, 2011, 213686.
[14] Brecher, A.S. and Dubord, R. (2008) Effect of acetaldehyde upon cathepsin G and chymase. NRAS implications. Digestive Diseases and Sciences, 53, 1311-1315. doi:10.1007/s10620-007-0013-0
[15] Jahanyar, J., Youker, K.A., Loebe, M., Assad-Kottner, C., Koerner, M.M., Torre-Amione, G. and Noon, G.P. (2007) Mast cell-derived cathepsin G: A possible role in the adverse remodeling of the failing human heart. Journal of Surgical Research, 140, 199-203. doi:10.1016/j.jss.2007.02.040
[16] Heinz, A., Jung, M.C., Jahreis, G., Rusciani, A., Duca, L., Debelle, L., Weiss, A.S., Neubert, R.H. and Schmelzer, C.E. (2012) The action of neutrophil serine proteases on elastin and its precursor. Biochimie, 94, 192-202. doi:10.1016/j.biochi.2011.10.006
[17] Kaliman, P.A. and Belovetskaya, I. (1986) Effect of cobalt chloride on the activity of key enzymes of heme metabolism in rat liver. Biochemistry, 51, 1302-1307.
[18] Maines, M.P., Kappas, A. (1977) Metals as regulators of heme metabolism. Science, 198, 1225-1221. doi:10.1126/science.337492
[19] Samokhina, L.M., Kravchenko, N.O. and Maksimova, N.A. (2002) Test-systems for determination of activity or concentration of cathepsin G in biological fluids. Ukraine Patent No. 44066A.
[20] Samokhina, L.M. and Maximova, N.A. (2004) Testsystems for determination of endothelial elastase activity in biological fluids. Ukraine Patent No. 45068.
[21] Yezhov, G.P., Babaev, A.A. and Novikov, V.V. (2007) Bioinformatic aspects of proteomics and protein degradation. Educational and methodological materials for the training program “Information storage and processing in biological systems”. Nizhny Novgorod, 86.
[22] Klimova, O.A. (2009) The composition of individual proteolytic enzymes. Russia Patent No. 2365623.
[23] Dosenko, V.E. (1998) Determination of different forms of elastase in the aorta in experimental arteriosclerosis. Lab Diagnosis, 1, 24-27.
[24] Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. doi:10.1016/0003-2697(76)90527-3
[25] Chaumont, A., Nickmilder, M., Dumont, X., Lundh, T., Skerfving, S. and Bernard, A. (2012) Associations between proteins and heavy metals in urine at low environmental exposures: Evidence of reverse causality. Toxicology Letters, 210, 345-52. doi:10.1016/j.toxlet.2012.02.005
[26] Pluteanu, F. and Cribbs, L.L. (2009) T-type calcium channels are regulated by hypoxia/reoxygenation in ventricular myocytes. American Journal of Physiology: Heart and Circulatory, 297, H1304-H1313. doi:10.1152/ajpheart.00528.2009
[27] Wei, S.S., Liao, X.X., Yang, C.T., Lin, J.Y., Yang, Z.L., Lan, A.P., Huang, X., Wang, L.C., Chen, P.X. and Feng, J.Q. (2009) Reactive oxygen species scavenger protects cardiac cells against injuries induced by chemical hypoxia. Nan Fang Yi Ke Da Xue Xue Bao, 29, 1977-1981.
[28] Qiao, H., Li, L., Qu, Z.C. and May, J.M. (2009) Cobaltinduced oxidant stress in cultured endothelial cells: Prevention by ascorbate in relation to HIF-1alpha. Biofactors, 35, 306-313. doi:10.1002/biof.43
[29] Yablonskaya, S.V., Filinska, O.M., Ostrovskaya, G.V. and Rybalchenko, V.K. (2009) Evaluation of hepatotoxicity of new derivative maleimides with cytostatic activity and its effect on lipid peroxidation and antioxidant system in liver. Ukrainian Biochemical Journal, 81, 83-92.
[30] Samokhina, L.M. and Samokhin, A.A. (2001) Chymase, elastase and tonin in rats under oxidative stress caused by the introduction of cobalt chloride. Ukrainian Biochemical Journal, 73, 47-51.
[31] Gemma, C., Vila, J., Bachstetter, A. and Bickford, P.C. (2007) Oxidative stress and the aging brain: From theory to prevention. In: Riddle, D.R., Ed., Brain Aging: Models, Methods, and Mechanisms, CRC Press, Boca Raton, 353374.
[32] Diaz, G.J., Julian, R.J. and Squires, E.J. (1994) Cobalt-induced polycythaemia causing right ventricular hypertrophy and ascites in meat-type chickens. Avian Pathology, 23, 91-104. doi:10.1080/03079459408418977
[33] Matsuura, H., Ichiki, T., Ikeda, J., Takeda, K., Miyazaki, R., Hashimoto, T., Narabayashi, E., Kitamoto, S., Tokunou, T. and Sunagawa, K. (2011) Inhibition of prolyl hydroxylase domain-containing protein downregulates vascular angiotensin II type 1 receptor. Hypertension, 58, 386-393. doi:10.1161/HYPERTENSIONAHA.110.167106
[34] Legedz, L., Randon, J., Sessa, C., Baguet, J.P., Feugier, P., Cerutti, C., McGregor, J. and Bricca, G. (2004) Cathepsin G is associated with atheroma formation in human carotid artery. Journal of Hypertension, 22, 157-166. doi:10.1097/00004872-200401000-00025
[35] Peters, K., Unger, R.E., Gatti, A.M., Sabbioni, E., Tsaryk, R. and Kirkpatrick, C.J. (2007) Metallic nanoparticles exhibit paradoxical effects on oxidative stress and pro-inflammatory response in endothelial cells in vitro. International Journal of Immunopathology and Pharmacology, 20, 685-695.
[36] Guo, Y., Yang, M.C., Weissler, J.C. and Yang, Y.S. (2007) PLAGL2 translocation and SP-C promoter activeity—A cellular response of lung cells to hypoxia. Biochemical and Biophysical Research Communications, 360, 659-665. doi:10.1016/j.bbrc.2007.06.106
[37] Tsoporis, J., Keeley, F.W., Lee, R.M. and Leenen, F.H. (1998) Arterial vasodilation and vascular connective tissue changes in spontaneously hypertensive rats. Journal of Cardiovascular Pharmacology, 31, 960-962. doi:10.1097/00005344-199806000-00022
[38] Hoffman, D.J., Eagles-Smith, C.A., Ackerman, J.T., Adelsbach, T.L. and Stebbins, K.R. (2011) Oxidative stress response of Forster’s terns (Sterna forsteri) and Caspian terns (Hydroprogne caspia) to mercury and selenium bioaccumulation in liver, kidney, and brain. Environmental Toxicology & Chemistry, 30, 920-929. doi:10.1016/j.bbamcr.2012.01.005
[39] Gjnther, V., Lindert, U. and Schaffner, W. (2012) The taste of heavy metals: Gene regulation by MTF-1. Biochimica et Biophysica Acta, 1823, 1416-1425.
[40] Jan, A.T., Ali, A. and Haq, Q. (2011) Glutathione as an antioxidant in in-organic mercury induced nephrotoxicity. Journal of Postgraduate Medicine, 57, 72-77. doi:10.4103/0022-3859.74298
[41] Kaliman, P.A., Samokhin, A.A. and Samokhina, L.M. (2000) The proteinase-proteinase inhibitor system in rats with oxidative stress caused by the introduction of cobalt chloride. Ukrainian Biochemical Journal, 72, 89-92.
[42] Kaliman, P.A., Samokhin, A.A. and Samokhina, L.M. (2000) The proteinase-proteinase inhibitor system in rats by administration of mercury chloride. Animal Biology, 2, 152-156.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.